
gOOi

User’s Guide

P39-5020-00

gOOi™
User’s Guide

� 1997, 1999, 2000, 2001 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE�
CINCOM®
Cincom Encompass®
Cincom Smalltalk�
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi�

iD CinDoc�
iD CinDoc Web�
iD Consulting�
iD Correspondence�
iD Correspondence Express�
iD Environment�
iD Solutions�
intelligent Document Solutions�

MANTIS®
Mindspeed�
MindspeedXML�
SPECTRA�
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com/

Release information for this manual
The gOOi User’s Guide, P39-5020-00, is dated January 31, 2001. This
document supports Release 4.0.01 of gOOi in the IBM MVS and VSE,
OpenVMS/Alpha, OpenVMS/VAX, Windows NT and Windows
95/98/2000 environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

FAX: (513) 612-2000
 Attn: gOOi Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: gOOi Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book xi
Using this document ...xi

Document organization...xii
Conventions...xiv

Related documentation.. xvii
Educational material ... xvii

Introduction 19
Overview of gOOi ... 19
Before you begin... 20
gOOi components... 21
How gOOi works... 23

Pre-Generation .. 24
Generation... 24
Post-Generation .. 25
Runtime ... 25

Just-In-Time GUI display 27
Introduction... 27
Features of Just-In-Time GUI display... 28

Common gOOi functions (Pop-Up Menu) ... 31
Additional keyboard considerations for JIT... 33
Using the title bar close options with JIT .. 34
JIT pop-ups... 34
Character Display for 3270 data streams... 37
Character Display for VT data streams .. 39

User’s Guide v

Preparing to generate gOOi forms 41
Loading gOOi ..42
Specifying gOOi generation options and settings ...45

Setting the screen ID..46
Application bundling ...48
Using MANTIS Dynamic CONVERSE ...49
Keeping forms open for reuse..49
Selecting the Host Connection...51
Specifying the Host Connection Profile..52
Specifying a TCP/IP Connection..53
Specifying an Emulator Connection ...55
Specifying host field attribute matching..59
Form and Color options ...62
Using hotspots ...72
Creating a user toolbar...76
Spacing toolbar items ..79
Specifying headers and footers..79
Pointing to prompter files ...80

Using environment-dependent tools ...82
Converting BMS and MFS source files into UEF format................................82
gOOi restrictions for non-MANTIS host applications82
BMS/MFS conversion procedure ...83
Capturing IBM mainframe host screens ..86
Locating screen IDs ...89

Creating a template for function key mapping ..91
Modifying a function key map file ...100
Copying a function key map file ...101

Editing your loadable application...102
Creating an application template for visual items ...103

Application template inheritance ..104
Steps for creating an application template for visual items..........................105

Downloading screens from MANTIS 111
Methods for transferring UEF screen images ...111
Using the Host Monitor..112
Using FTP ...117
Creating .exp files with the File Splitter ...118

gOOi restrictions for MANTIS applications ..118
UEF file splitting steps..119

Contents

vi P39-5020-00

Generating gOOi forms 125
Overview of gOOi forms generation ... 125
Specifying gOOi form components... 127

gOOi form generation restrictions ... 127
MANTIS users ... 129
Form component specification steps... 130

Generating gOOi application forms .. 141
Viewing a gOOi form .. 146

Viewing an ungenerated form using Preview .. 146
Viewing a generated gOOi form without a host connection......................... 147
Viewing a generated gOOi form with a host connection.............................. 148

Using integration wizards 149
Word Wizard tool.. 149
Excel Wizard tool.. 153

Customizing gOOi forms 159
Overview of customization.. 159
Bringing a gOOi form into ObjectStudio Designer.. 161
Basic customizations .. 164

Moving fields.. 164
Changing the size and shape of fields... 167
Grouping fields graphically .. 180
Changing the form title and/or background ... 185

Additional customizations ... 190
Using check boxes for Y/N fields... 190
Using spin buttons for numeric fields .. 191
Putting data in the status line .. 192
Using property pages .. 197
Example of an event-driven customization.. 203
Creating an event-driven button with an existing Smalltalk method............ 203
Creating an event-driven button with Smalltalk ... 206

Contents

User’s Guide vii

Host Navigation 213
Overview of Host Navigation...213
Host Navigation methods and attributes ...214
Object: Controllers generated by the Application Generator....................................220
Methods ..221
Attributes ...225
Object: Host Objects generated by the Application Generator226
Methods ..226
Attributes ...227
Object: GOOIHostMonitorController ..227
Methods ..227
Attributes ...229
Object: gOOi Session ..230
Methods ..230
Attributes ...236
Object: GOOIJITController (Just-In-Time Controller) ..237
Methods ..237
Attributes ...242
Object: GOOIJITCustomController (Just-In-Time Custom Controller)243
Methods ..244
Attributes ...247
Object: GOOIVTEmulatorCustomController ..248
Methods ..248
Attributes ...257

Deploying a gOOi application 259
gOOi application deployment steps ..260

Using the standard Program Generator...261
Using the Small Program Generator..267

PC CONTACT file access 269
Overview of PC CONTACT file access...269
Options for PC CONTACT..270

Save/Open display options ..271
Numbered files floating point field format ..272

Designing a MANTIS view for PC CONTACT...273
Create or update file views...274
Update file view layout ...277

Sample PC file view design...280
Sample program ...285

Contents

viii P39-5020-00

PC CONTACT supported file types .. 286
Sequential BASIC files .. 286
Sequential TEXT files .. 286
Sequential DIF files ... 287
Numbered files .. 292

IBM mainframe considerations 293
Platform considerations.. 293

Emulator considerations 297
How gOOi recognizes emulators.. 297
Emulators ... 297

PC3270.. 297
EXTRA! ... 298
RUMBA.. 298
KEA! .. 298
Generic EHLLAPI .. 299
Reflection... 300
Reflection for UNIX and Digital.. 300

Screen Registry and AD/Advantage 301
Screen registry and AD/Advantage .. 301

gOOi class files and names 303
gOOi classes .. 303

Emulator Communication class files ... 303
Telnet class files .. 303
TN3270 class files ... 303
TNVT class files .. 304
Generator class files.. 304
Run-time class files ... 304
gOOi user interfaces ... 304
Supporting classes .. 305
Utility class... 305
Just-In-Time classes ... 305
Messages .. 305
BMS converter... 305
MFS converter ... 306
UEF Generator .. 306
Default templates... 306

Contents

User’s Guide ix

Rules for screen IDs and MANTIS prompter IDs 307
Screen ID rules ...307
Screen ID options..308
Prompter ID rules..310

Host-PC translation tables 311
Translation tables..311

gOOi error messages 315
GOOIMessages class ...315

Using the UEF Generator 327
Using the UEF Generator..327

Glossary of terms 329

Index 333

Contents

x P39-5020-00

About this book

Using this document
The purpose of this guide is to assist developers who want to generate
Windows -compatible interfaces for host applications (for example,
MANTIS®, IBM® CICS, and AD/Advantage).

gOOi� forms are generated through ObjectStudio , an object-oriented
development tool offered by Cincom.

Before generating gOOi forms, you may need to be familiar with MANTIS
and its Universal Export Facility (UEF), IBM Message Formatting Service
(MFS), or IBM CICS Basic Mapping Support (BMS). For information
about these products, refer to AD/Advantage MANTIS Administration
OpenVMS/UNIX, P39-1320, or AD/Advantage MANTIS Facilities OS/390,
VSE/ESA, P39-5001.

ObjectStudio Designer lets you modify and extend gOOi forms (see
�Overview of customization� on page 159 for specific information). For
more information about ObjectStudio Designer, refer to the ObjectStudio
User Interface Guide, P40-3205.

You can also use gOOi for Java� to Web-enable MANTIS® and
AD/Advantage host applications. For more information about gOOi for
Java, refer to the gOOi for Java User’s Guide, P39-5021.

User’s Guide xi

Document organization
The information in this manual is organized as follows:

Chapter 1—Introduction
Provides a high-level discussion of gOOi capabilities.

Chapter 2—Just-In-Time GUI display
Provides directions for using the automatic GUI display feature.

Chapter 3—Preparing to generate gOOi forms
Discusses preparation for gOOi forms generation and provides step-
by-step procedures for tools that may be needed before generating
gOOi forms.

Chapter 4—Downloading screens from MANTIS
Discusses ways to get Universal Export Facility (UEF) descriptions of
MANTIS screens from the host to the PC.

Chapter 5—Generating gOOi forms
Provides step-by-step procedures for generating gOOi forms
(interfaces) for host application screens.

Chapter 6—Using integration wizards
Provides step-by-step procedures for using wizard tools to integrate a
host application with a Microsoft product (Word or Excel) on the PC.

Chapter 7—Customizing gOOi forms
Provides step-by-step procedures for extending gOOi forms using
ObjectStudio�s Designer tool. The chapter also shows how visual
items can be assigned to the gOOi generation process as a parent
class, causing all generated forms to inherit the same visual items.

Chapter 8—Host Navigation
Describes how to programmatically take control from gOOi (for
example, the Host Monitor) and move through host screens yourself.

Chapter 9—Deploying a gOOi application
Provides step-by-step procedures for deploying a gOOi application to
an end-user workstation.

Chapter 10—PC CONTACT file access
Describes how to use PC CONTACT to upload/download data
between MANTIS on the mainframe and a personal computer.

About this book

xii P39-5020-00

Appendix A—IBM mainframe considerations
Provides information specific to users of IBM mainframes.

Appendix B—Emulator considerations
Provides the settings necessary for gOOi to recognize a specific
emulator.

Appendix C—Screen Registry and AD/Advantage
Provides information specific to AD/Advantage users.

Appendix D—gOOi class files and names
Provides a list of class files and class names used by gOOi.

Appendix E—Rules for screen IDs and MANTIS prompter IDs
Provides rules for the unique identifiers required by gOOi for all
screens and MANTIS prompters.

Appendix F—Host-PC translation tables
Provides the key mappings used in the default IBM and ASCII
controllers provided with this product.

Appendix G—gOOi error messages
Provides descriptions and user actions for error messages generated
by gOOi.

Appendix H—Using the UEF Generator
Provides step-by-step procedures for creating a UEF (Universal
Export Facility) file from gOOi forms, then uploading the file to the
host and importing it into MANTIS.

Glossary of terms

Index

About this book

User’s Guide xiii

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

 A single item enclosed by
brackets indicates that the item is
optional and can be omitted.
The example indicates that you
can optionally enter a WHERE
clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you
can optionally enter either WAIT
or NOWAIT. (WAIT is
underlined to signify that it is the
default.)

(WAIT)
(NOWAIT)
�

�
�

�

�
�

About this book

xiv P39-5020-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces
or to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when
using the MONITOR statement.

MONITOR
ON
OFF
�
�
�

�
�
�

Underlining
(In syntax)

Indicates the default value
supplied when you omit a
parameter.
The example indicates that if you
do not choose a parameter, the
system defaults to WAIT.

(WAIT)
(NOWAIT)
�

�
�

�

�
�

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you
can enter either STAT or
STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you
can enter multiple host variables
and associated indicator
variables.

INTO :host-variable [:ind-
variable],...

UPPERCASE
Lowercase

In most operating environments,
keywords are not case-sensitive
and they are represented in
uppercase. You can enter them
in either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

 In the UNIX operating
environment, keywords are case-
sensitive and you must enter
them exactly as shown.

cp *.QAR /backup

About this book

User’s Guide xv

Convention Description Example
Italics Indicate variables you replace

with a value, a column name, a
file name, and so on.
The example indicates that you
must substitute the name of a
table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
LEN4

� (Right arrow) Indicates that you should select
each choice that is separated by
an arrow, in sequence.

Select File � Save as

+ (Plus sign) Indicates that you should hold
down the first key and press the
second key.

CTRL+S

Mouse button conventions
Mouse button 1 refers to the primary mouse button on a right-handed
mouse, the button on the left; on a left-handed mouse, the button on the
right.

Mouse button 2 refers to the secondary mouse button on a right-handed
mouse, the button on the right; on a left-handed mouse, the button on the
left.

About this book

xvi P39-5020-00

Related documentation
Below are listed the manuals referenced in this document that will be
helpful with your understanding of gOOi.

General use

♦ AD/Advantage MANTIS Language OpenVMS/UNIX, P39-1310

♦ AD/Advantage MANTIS Facilities OpenVMS/UNIX, P39-1300

♦ gOOi for Java User’s Guide, P39-5021

♦ ObjectStudio User Interface Guide, P40-3205

♦ ObjectStudio Smalltalk User’s Guide, P40-3202

♦ ObjectStudio User's Guide, P40-3201

Educational material
MANTIS educational material is available from your regional Cincom
education department.

About this book

User’s Guide xvii

About this book

xviii P39-5020-00

1
Introduction

Overview of gOOi
gOOi (pronounced gooey (�gü-ē)) is a Graphical User Interface (GUI)
design tool that allows you to extend almost any host application, such as
MANTIS, IBM CICS, and AD/Advantage, into the Microsoft® Windows
GUI environments.

gOOi can quickly generate the appropriate Windows code corresponding
to your host application without making changes to your host system.
We recommend, but do not require, that your host applications have
unique screen identifiers in a standard location. If your application uses
MANTIS prompters, gOOi requires a unique identifier (enclosed within
parentheses) at the end of each prompter description.

User’s Guide 19

Before you begin
Before installing gOOi, make sure the latest version of ObjectStudio,
including ObjectStudio Designer and Modeling Tool, is installed on your
PC. Please visit the Cincom Web site (www.cincom.com), or contact
your Cincom representative for ObjectStudio version information.

If you have a TCP/IP network, gOOi does not require any additional
software. If you do not have a TCP/IP network, gOOi includes interfaces
for many of the popular host emulators, such as:

♦ Attachmate Corporation�s Extra!�

♦ Attachmate Corporation�s KEA!�

♦ IBM� Corporation�s Personal Communications

♦ Wall Data Corporation�s Rumba�

♦ WRQ, Inc.�s Reflection�

♦ WRQ, Inc.�s Reflection2

gOOi also supports IBM mainframe emulators other than those in the
preceding list via two generic EHLLAPI interfaces. If your emulator is not
listed here, contact Cincom to see if your emulator is supported.

After installing ObjectStudio, you can install gOOi according to the
on-screen setup instructions provided on the installation media. When
you have verified that the required software has been successfully
installed, you are ready to create a gOOi application (see �Generating
gOOi application forms� on page 141)

For best results with gOOi, we recommend that you set your display
settings for the desktop area at 800 by 600 pixels, or a higher resolution
of 1024 by 768 pixels. We do not recommend a resolution of 640 by 480
pixels.

Chapter 1 Introduction

20 P39-5020-00

http://www.cincom.com/

gOOi components
When you purchase gOOi, you receive several components that work
together to generate custom-designed forms for developing a loadable
application for ObjectStudio. The contents of a complete gOOi package
include the following:

Component Description
Application Generator Generates a gOOi application containing

Windows interfaces for all the host
screens that you specify

Host Monitor Monitors a host session and automatically
matches each host screen to the proper
gOOi form, or presents a Just-In-Time
GUI display when no form is available

Template Hierarchy
Browser

Creates template subclasses for
developing function key maps

Settings Defines host screen configuration
settings and gOOi form generation
options

Screen ID Locator Determines a suitable location to add a
screen ID

File Splitter Selects all screen (and prompter, if
applicable) elements in a UEF file and
places them in separate .exp files

Dynamic Screen
Capture

Generates a UEF file for an IBM
mainframe host screen that can be used
as input to the Application Generator

gOOi components

User’s Guide 21

Component Description
BMS Converter Converts a BMS file into a UEF file
MFS Converter Converts an MFS file into a UEF file
Function Keys Definition Creates menu items that invoke function

key commands
Word Wizard Integrates host data into a Word for

Windows document
Excel Wizard Integrates host data into an Excel

spreadsheet
Just-In-Time Display
(JIT)

Displays a Windows presentation for a
host screen without any form generation
(requires a TCP/IP network and an IBM
mainframe host)

Screen Registry tool Associates one or more screen IDs with a
gOOi form that has a name that does not
match the screen ID

The Universal Export Facility (UEF) includes a specification for
describing host screens.

Chapter 1 Introduction

22 P39-5020-00

How gOOi works
The following illustration depicts a high-level view of gOOi:

Session

Host

Host Monitor

JIT
Generated

Forms

Tools

Generator

Tools

How gOOi works

User’s Guide 23

Pre-Generation
You can control the appearance of generated forms through the
generation options provided with the Application Generator (see
�Specifying gOOi generation options and settings� on page 45 for specific
information).

Configuration options provide inherited (parent class) properties for gOOi
form generation. gOOi templates provide the ability to automatically add
GUI controls (for example, buttons) to your gOOi forms to enhance the
user interface.

Because host applications are often function key driven, gOOi includes a
tool that lets you define pull-down menus for invoking commands
associated with specific terminal function keys.

gOOi uses MANTIS Universal Export Facility (UEF) format input files to
generate forms. The BMS/MFS Converter tools take an input file that
describes host BMS/MFS screens and outputs a file with equivalent
descriptions of these screens in UEF format. This output file can then be
input into the File Splitter tool to create one file per screen for input to the
Application Generator.

gOOi can also dynamically capture any 3270-style host screen for
conversion into a gOOi form. The Dynamic Screen Capture tool creates
a UEF format file from the currently displayed IBM mainframe host
screen.

Generation
Host screen definitions in UEF format are input to the gOOi Application
Generator, which outputs gOOi forms.

Each form consists of two ObjectStudio classes: a controller class with
the visual display, and a host object class with host screen information.
The controller class part of the form can be customized for enhanced
display and/or processing.

The host object contains information specific to the host screen, such as
field location and size, and can be regenerated independently of the
controller if the host screen changes. Thus, you do not lose your visual
display changes when the underlying host screen changes.

Chapter 1 Introduction

24 P39-5020-00

Post-Generation
After generating a gOOi application, you can use ObjectStudio�s Designer
tool to customize the forms and improve the usability of your application.

ObjectStudio Designer allows you to move fields and enhance forms with
resizable drop-down lists, slider bars, push buttons, and other GUI
controls. For more information about ObjectStudio Designer, refer to the
ObjectStudio User Interface Guide, P40-3205. gOOi provides an easy
way for developers to employ object-oriented programming. gOOi
generates standard ObjectStudio Smalltalk code or Java code that you
can add to as needed. Custom code can also be attached to other
Windows events.

You can then use the Host Navigation feature of gOOi to combine
multiple host screens into a single gOOi form. You can also utilize this
feature to automate processing of host screens that do not require user
interaction, such as file uploads or downloads.

The Excel and Word wizards are examples of post-generation tools.
These wizards provide an easy way to integrate your generated form
controllers with these popular desktop tools.

Cincom can provide the necessary training or professional services for
implementing the object-oriented capabilities of gOOi and ObjectStudio.
For more information, contact your Cincom representative.

Runtime
When the Host Monitor is started, it establishes a session with the host
and starts monitoring host screen activity. gOOi attempts to find a
matching form for each host display. If gOOi finds one, it displays that
form. If no matching form is available and the Just-In-Time GUI display
(JIT) feature is available, gOOi presents a JIT window.

You can override the display of both generated forms and JIT. See �Host
Navigation� on page 213 for details.

When using the direct gOOi TCP/IP connection with MANTIS for
OpenVMS/UNIX, start MANTIS with the �gooi� parameter.

How gOOi works

User’s Guide 25

Chapter 1 Introduction

26 P39-5020-00

2
Just-In-Time GUI display

Introduction

Just-In-Time is only available with hosts that support a 3270 data stream.
If you are working with a OpenVMS/UNIXhost, please see �Character
Display for VT data streams� on page 39.

gOOi's Just-In-Time (JIT) GUI display feature offers a graphical interface
for your host application without any application generation. This feature
allows you to be productive with gOOi immediately, and with little or no
effort. You can then gradually evolve your host applications into a richer
graphical environment using the other features of gOOi and
ObjectStudio. You can choose to enhance your most used, or most
complex, applications and leave the others alone.

User’s Guide 27

Features of Just-In-Time GUI display
The following window shows a sample Just-In-Time (JIT) display:

The preceding window displays some of the features of JIT:

♦ The main body of the window consists of static text and entry fields
(only one , Option, in this case).

♦ The field color for both static and entry fields can be modified via
Form/Field Colors of Settings.

♦ Text from any individual field on a single line can be copied to the
clipboard by highlighting the desired text and pressing Ctrl+C, or via a
pop-up that is displayed by clicking mouse button 2 (for example,
right mouse button), as shown in the following window:

Chapter 2 Just-In-Time GUI display

28 P39-5020-00

♦ To copy text from multiple fields or lines to the clipboard, drag the
pointer from left to right across the window while holding down
mouse button 1 (for example, left mouse button). A rectangle forms
a lasso around the fields/lines as you move the mouse. When you
release mouse button 1, the text inside the rectangular lasso is
copied to the clipboard.

The preceding window also shows two toolbars that can be included as
part of the JIT window. The toolbar at the top of the window is a sample
user toolbar that is distributed with gOOi (jitnet.tb).

Features of Just-In-Time GUI display

User’s Guide 29

From left to right, the toolbar icons represent the following actions:

Button

Shortcut
key

Action

Alt+F4 Exit and disconnect from the host

 Alt+D Present the gOOi character display
window

Alt+R Refresh the current JIT window

Alt+T Retitle the current JIT window

Alt+K Present the keyboard mapping window

Alt+F Present a list of function keys for

selection

Ctrl+P Print the current JIT window

Ctrl+X Cut the selected text to the clipboard

Ctrl+C Copy the selected text to the clipboard

Ctrl+V Paste from the clipboard to the current

cursor position (paste will continue to
subsequent entry fields if the size of
the clipboard text exceeds the size of
the entry field where the cursor is
positioned)

 Present the Cincom web site using

your Web browser

Chapter 2 Just-In-Time GUI display

30 P39-5020-00

Common gOOi functions (Pop-Up Menu)
Regardless of whether you elect to implement a user toolbar with JIT, a
pop-up menu of common functions is always available by clicking mouse
button 2 near the window border (outside any of the fields), as shown in
the following example:

Features of Just-In-Time GUI display

User’s Guide 31

To provide an alternative to the keyboard, the FUNCTION KEYS option
displays a pop-up that allows a choice of common keys, as shown in the
following example:

The toolbar at the bottom of the window is created dynamically from the
contents of the display, according to patterns defined in the Hotspots
setting of gOOi. In the preceding window, the toolbar includes eight
buttons because the display contains eight data items that match the
defined pattern of F##=@.

The example has a title of �gOOi�. You may want to change this,
especially if you have multiple JIT sessions. This title can be modified on
the startup shortcut with the -GT startup option. The following example
sets the JIT title to �gOOi � TSO�:
C:\Program Files\Cincom Systems\gOOi\gOOi.exe -"GTgOOi – TSO"

Chapter 2 Just-In-Time GUI display

32 P39-5020-00

Additional keyboard considerations for JIT
The behavior of the HOME key depends on the status of the field where
the cursor is positioned when this key is pressed:

♦ If the field is highlighted when HOME is pressed, the cursor is
positioned at the beginning of the field and the field will no longer be
highlighted.

♦ If the field is not highlighted but the cursor is not at the beginning of
the field, the cursor is moved to the beginning of the field.

♦ If the field is not highlighted and the cursor is at the beginning of the
field, the cursor is moved to the first unprotected field on the display.

The behavior of the UP ARROW and DOWN ARROW keys is as follows:

♦ These keys have no effect if the cursor is in the first row of the form
and UP ARROW is pressed, or if the cursor is in the last row of the
form and DOWN ARROW is pressed.

♦ If the form has an entry field that begins in the same column of the
row directly above (UP ARROW) or below (DOWN ARROW) the current
field, the cursor is moved to that entry field regardless of any other
fields on these preceding rows.

♦ Otherwise, the cursor is moved to the nearest preceding (UP ARROW)
or following (DOWN ARROW) row that has an entry field. If this row
contains multiple entry fields, the cursor is positioned in the first entry
field from the beginning of the row.

Additional keyboard considerations for JIT

User’s Guide 33

Using the title bar close options with JIT
There are two standard ways to close a window from the title bar:

♦ Select Close from the control menu (accessible via the icon in
the left corner of the title bar) or via the pop-up menu by clicking
mouse button 2 in the body of the title bar.

♦ Click the Close button (����) in the right corner of the title bar (or use
keyboard shortcut ALT+F4 for closing a window).

For both of the former approaches, JIT sends the escape sequence
specified in Settings to the host. This sequence should be set to the key
that is most commonly used to back out of a host screen, such as PF3 or
PA2 (see �Specifying the Host Connection Profile� on page 52.

The Profile section of a host connection specifies the profile name,
whether the host connection is via gOOi TCP/IP or through an emulator,
and an escape sequence. GOOi includes two sample host connection
profiles, SampleMainframe and SampleDigitalUNIX. Both of these
profiles use the gOOi TCP/IP connection. You can modify a sample for
use with your host, or create a new profile.

The connection type (TCP/IP or emulator) determines which of the other
two sections of the host connection is active. A host connection profile
can include information for both connection types, but gOOi connects to
the host based on which of the two radio buttons is selected.

JIT pop-ups
Before the JIT window is presented, gOOi checks to see if the host
application includes a pop-up. To make this determination, gOOi looks
for the four corners of the pop-up according to the following default
patterns:

Corner Pattern 1 Pattern 2
Top left +---- .----
Top right ----+ ----.
Bottom left +---- �----
Bottom right ----+ ----�

Chapter 2 Just-In-Time GUI display

34 P39-5020-00

If gOOi finds a match for all four corners for any of the defined patterns, a
pop-up displays and the underlying JIT form is disabled, as in the
following example:

JIT pop-ups

User’s Guide 35

The pop-up remains displayed until the user enters the appropriate
response (for example, PF3) to continue processing.

If any of the defined patterns causes a pop-up to display when the host
application does not have a pop-up, it is easy to remove the pattern from
JIT. For example, if pattern 1 is invalid for your host application(s), edit
the gooi.ini file to remove this pattern. By default, the JIT section of
gooi.ini includes four parameters that identify pop-up borders:

bottomLeftPopupBorder=+----,'----

bottomRightPopupBorder=----+,----'

topLeftPopupBorder=+----,.----

topRightPopupBorder=----+,----.

To remove the second pattern, edit gooi.ini so that these parameters
appear as follows:

bottomLeftPopupBorder=+----

bottomRightPopupBorder=----+

topLeftPopupBorder=+----

topRightPopupBorder=----+

You can also edit gooi.ini to replace a pattern that is not applicable for
your host application(s), or add an additional pattern. Patterns are
delimited with commas, so any additional patterns that you insert must be
preceded by a comma. Changes to gooi.ini for JIT take effect the next
time the Host Monitor is started.

Chapter 2 Just-In-Time GUI display

36 P39-5020-00

Character Display for 3270 data streams

The 3270 Character Display is only available when using the gOOi
TCP/IP connection. If you are running gOOi with an emulator, the normal
emulator display is the equivalent of the Character Display.

The gOOi 3270 Character Display is accessible via the mouse button 2
pop-up menu that was described earlier in this chapter. This display is a
window containing a traditional 3270 character based display (green
screen):

You may want to go to the 3270 Character Display to check host
response if the JIT window is inconsistent, or to verify a host row/column
position.

Character Display for 3270 data streams

User’s Guide 37

The color settings for the Character Display are:

♦ Black. Background

♦ Green. Protected, normal intensity

♦ White. Protected, high intensity

♦ Yellow. Unprotected, normal intensity

♦ Cyan. Unprotected, high intensity

The toolbar at the top of the Character Display has the following choices:

Button Description

Connects you to the host via TCP/IP

Disconnects you from the host

Presents the keyboard mapping window

Presents a list of function keys for selection

 Toggles you to the JIT window

 Presents the Host Monitor

The status line at the bottom of the Character Display provides the
following items of information:

♦ Connection status (Connected or Disconnected)

♦ Message (for example, �Press Reset to unlock the keyboard�)

♦ Insert status (empty or INS)

♦ Communication status (for example, SEND, X, PRO if trying to key
into protected field)

♦ Cursor position (row, column)

Chapter 2 Just-In-Time GUI display

38 P39-5020-00

Character Display for VT data streams

The VT Character Display is only available when using the gOOi TCP/IP
connection. If you are running gOOi with an emulator, the normal
emulator display is the equivalent of the Character Display.

The gOOi VT Character Display is accessible via the mouse button 2
pop-up menu that was described earlier in this chapter. This display is a
window containing a traditional VT character cell presentation:

You may want to go to the VT Character Display to check host response
when testing a gOOi form, or to verify a host row/column position.

Character Display for VT data streams

User’s Guide 39

The toolbar at the top of the Character Display has the following choices:

Button Description

 Copies selected text to the clipboard

 Pastes text from the clipboard

 Prints the display

The status line at the bottom of the Character Display provides the
following items of information:

♦ Host machine to which this session is connected

♦ Cursor position (row, column)

Chapter 2 Just-In-Time GUI display

40 P39-5020-00

3
Preparing to generate gOOi forms

Before using gOOi to create a graphical interface for your host
application, set the appropriate configuration options to ensure
satisfactory results.

Follow these steps when preparing to generate gOOi forms:

1. Load gOOi (see �Loading gOOi� on page 42 for more information).

2. Specify host screen configuration settings and gOOi form generation
options (see �Specifying gOOi generation options and settings� on
page 45 for more information).

3. (Optional) Perform pre-generation tasks depending upon your
environment (see �Using environment-dependent tools� on page 82
for more information).

4. (Optional) Create a template for function key mapping. Default
templates are provided (see �Creating a template for function key
mapping� on page 91 for more information).

5. (Optional) Create a template for visual items (see �Creating an
application template for visual items� on page 103 for more
information).

6. (Optional) Create .exp files using the File Splitter (see �Creating .exp
files with the File Splitter� on page 118 for more information).

After following these steps to configure gOOi, you are ready to generate
gOOi forms.

User’s Guide 41

Loading gOOi
To load gOOi, perform the following steps:

1. Run ObjectStudio. The following window displays:

2. Click the mouse button 2 in the Work Area. A pop-up menu displays.

3. Choose Load Application. The following window displays:

Chapter 3 Preparing to generate gOOi forms

42 P39-5020-00

4. Select gOOi Developer and click LOAD, or double-click on gOOi
Developer. The following gOOi Workplace and gOOi Tools windows
display:

Loading gOOi

User’s Guide 43

5. When you close the gOOi Workplace window, you are returned to
the ObjectStudio Workplace Desktop. The desktop now includes a
gOOi Developer icon in the workplace, as shown in the following
example:

6. Specify your host screen configuration settings and gOOi form
generation options.

Chapter 3 Preparing to generate gOOi forms

44 P39-5020-00

Specifying gOOi generation options and settings
To specify host screen settings, perform the following steps:

1. At the Workplace Desktop, double-click the gOOi Developer icon.

2. Double-click the Settings icon to display the following window:

3. Specify the appropriate screen ID values to store in the profile (see
�Setting the screen ID� on page 46) It may be useful to set up
multiple profiles, since gOOi can dynamically switch between screen
ID profiles at runtime.

4. Verify or change the other configuration settings for this profile as
appropriate.

When you click OK, your specified values are written to the gooi.ini file in
the directory where ObjectStudio is installed. You can update these
values through the Settings facility for particular client workstations. The
Exit button closes this window without saving changes.

Specifying gOOi generation options and settings

User’s Guide 45

The following describes the tasks you can perform using the Settings
window.

Setting the screen ID
The screen ID values specify the exact location and size of the screen ID
for your host screens. This allows gOOi to automatically recognize the
screens on the host (see �Screen ID rules� on page 307 for more
information about screen IDs). gOOi can generate an application that
includes screens that do not conform to your specifications, but the
generator will issue warnings. The host navigation feature of gOOi can
be used to identify host screens that do not have screen IDs

To specify screen ID settings:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Select a profile name from the list, or enter a new name. (The profile
name should begin with a letter and should not include any spaces or
trailing blanks.)

gOOi comes with two preset screen ID profiles: MANTIS and
AD/Advantage.

3. Enter the screen ID row locations for Screen and Pop-up. This value
must be less than the height of the host screen.

4. Enter the screen ID column locations for Screen and Pop-up. This
value must be less than the width of the host screen.

5. Enter the screen ID lengths for Screens and Pop-ups, respectively.
This value must not exceed the host screen width.

6. Select Add / Save to save profile information to the gooi.ini file.

Chapter 3 Preparing to generate gOOi forms

46 P39-5020-00

7. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

You can set up multiple screen ID profiles so that host applications can
use different screen ID locations.

For example, all your Inventory screens might have a screen ID at row 1,
column 70, whereas all your Payroll screens might have a screen ID at
row 2, column 2. In this case, you would set up an Inventory profile and a
Payroll profile with these values.

If you do not have screen IDs on your host screens, the gOOi Screen ID
Locator can help you determine a suitable location to add these IDs (see
�Locating screen IDs� on page 89 for more information).

gOOi attempts to generate forms with names comprised of the screen ID
suffixed with Controller. For example, the Application Generator
produces a form name of PAY001Controller for a host screen with ID
PAY001.

If there is no valid screen ID on the host screen, however, gOOi will
assign the form the name of the host screen suffixed with Controller. For
example, if host screen QUERY1 lacks a screen ID, the Application
Generator produces a form named QUERY1Controller. In lieu of a
screen ID for QUERY1, host navigation code will then be required for
gOOi to identify QUERY1 at runtime and display the gOOi form.

Lastly, it is possible with gOOi to associate a host screen that does have
a screen ID with a form of a different name. In this instance, gOOi might
detect a screen ID of CUST01, but display an associated form named
CLIENT1. �Screen Registry and AD/Advantage� on page 301 explains
how to implement this association.

Specifying gOOi generation options and settings

User’s Guide 47

Application bundling

This feature is only available with the gOOi TCP/IP connection. It cannot
be used when gOOi is running with an emulator.

Screen IDs are the normal method of host identification for gOOi. gOOi
dynamically searches all saved screen ID profiles to find a profile that
matches a host screen ID.

If gOOi cannot find a match at the location specified by the first screen ID
profile, it searches the next profile, then the next, and so on, until a match
is found. If a screen ID match is not found and the host screen is not
identified via host navigation, gOOi reverts to the profile originally used
and presents JIT (where applicable) or the character display.

With this feature, gOOi allows multiple applications to be bundled into
one executable, if desired. It also allows for multiple screen ID locations
within the same application or major application function.

Application bundling of screen ID profiles implements an MRU (most
recently used) technique for screen ID searching. With this technique,
when a profile changes, gOOi is not likely to search multiple profiles
again until the application or major application function changes, thus
increasing efficiency.

If you do not wish to use application bundling, simply specify only one
screen ID profile for gOOi, and profile searching will not occur.

Chapter 3 Preparing to generate gOOi forms

48 P39-5020-00

Using MANTIS Dynamic CONVERSE
We do not recommend that you use MANTIS Dynamic CONVERSE
(CONVERSE with (row, column) specification other than the default of (1,
1)) to display host screens (with their screen IDs) at a position other than
the one at which they were designed. However, if all screen IDs in a
single application are dynamically CONVERSEd to the same position,
you can determine the row and column offset with the following algorithm:

(designed-value - 1) + conversed-value = CONVERSE setting

Apply this algorithm to both row values and column values. For example,
if a host screen ID is defined at row 2, column 2 in the UEF file, and
dynamically CONVERSEd at row 5, column 2, you must enter row 6,
column 3 on the Settings screen: (2-1)+5 = 6; (2-1)+2 = 3.

If multiple screens are being displayed through CONVERSE WAIT SET,
they can be generated together, with each one using a different display
row and column. For example, if screen1 is conversed at row 1, column
1; and screen2 is conversed at row 4, column 49; then a single gOOi
panel could be generated consisting of screen1 (row 1, column 1) and
screen2 (row 4, column 49).

Be careful to specify exactly the screen ID location that is valid for your
application. Otherwise, gOOi cannot identify the host screens and invoke
their corresponding gOOi forms.

Keeping forms open for reuse
The Keep forms open for reuse option retains gOOi forms in memory for
faster access.

This increases the amount of memory used by gOOi.

Specifying gOOi generation options and settings

User’s Guide 49

To keep forms open for reuse:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Select the �Keep forms open for reuse� check box.

3. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

If a gOOi application has many forms, you may not be able to keep them
all open due to limited memory. Therefore, generate your forms with this
option on and turn the option off for smaller or little-used forms.

For example, TESTFORM was generated with this option set. Follow
these steps to turn off the option for TESTFORM:

1. Ensure that the application that includes TESTFORM is loaded into
ObjectStudio.

2. In Class Browser, select TESTFORMHostObject from list of classes.

3. Select customInitialize from the list of methods.

4. Change the line in the source code that reads: �self keepOpen: true.�
to instead read: �self keepOpen: false.� and save the method using
Method/Save on the menu.

The Keep forms open for reuse option must be on in Settings for this
option to be in effect at run time. If the option is off at run time, the
gOOi forms will not be kept open even if the option was on at
generation time.

Chapter 3 Preparing to generate gOOi forms

50 P39-5020-00

Selecting the Host Connection
You can choose the type of host connection on which gOOi will interact
with the host. Follow these steps to choose the host connection:

1. Open the gOOi-Settings window (see �Specifying gOOi generation
options and settings� on page 45).

Another route to get to the Host Connection selection of gOOi is via
the File menu of the Host Monitor.

2. Click Host Connection, and the following window is displayed:

3. Specify a Profile and its connection data, either TCP/IP or Emulator.
Click OK to close the Host Connections window and save the
changes, or Cancel to exit without saving the changes.

Specifying gOOi generation options and settings

User’s Guide 51

Specifying the Host Connection Profile
The Profile section of a host connection specifies the profile name,
whether the host connection is via gOOi TCP/IP or through an emulator,
and an escape sequence. gOOi includes two sample host connection
profiles, SampleMainframe and SampleDigitalUNIX. Both of these
profiles use the gOOi TCP/IP connection. You can modify a sample for
use with your host, or create a new profile.

The connection type (TCP/IP or emulator) determines which of the other
two sections of the host connection is active. A host connection profile
can include information for both connection types, but gOOi connects to
the host based on which of the two radio buttons is selected.

Escape sequence
The Escape sequence entry is the host character sequence used to
cancel or quit your application. It is used when you close a gOOi form, a
prompter window, or a pop-up window. In such cases, gOOi must close
not only your graphical window, but also the corresponding host screen.

The gOOi TCP/IP connection for an IBM mainframe can recognize a
logical key name, such as PA2 (the default value) or PF3, or the
EHLLAPI equivalents of these logical keys. When using gOOi with an
emulator that supports EHLLAPI, the proper mnemonic must be used,
such as @y for PA2. This value can vary with each OpenVMS/UNIX host
emulator (see �Host-PC translation tables� on page 311 for a list of
mnemonics).

The gOOi TCP/IP connection for an OpenVMS/UNIX host uses a �F1 -�
for the escape sequence. This setting represents a keyboard sequence
of the F1 key followed by the minus (-) key.

Since gOOi sends the escape sequence that is specified in Settings
when a form is closed via the upper right corner button, this specification
should be set to the key that is most commonly used by your applications
to exit from a display. For example, use PF3 (TCP/IP connection) or @3
(emulator) if PF3 is typically the key pressed to exit from a display.

You may need to handle some displays differently. For example, if the
application flow is from form A to B to C to D to E, form C may need
PF12 to close and the other four forms may need PF3. If the user closes
form C via the top right corner button, the PF3 sent because of the @3 in
Settings will not have the desired affect.

Chapter 3 Preparing to generate gOOi forms

52 P39-5020-00

It is easy to override the @3 as needed in individual forms (such as form
C) by adding the escapeSequence class method to the form, as shown in
the following example:

escapeSequence

^ '@c'.

In the preceding example, @c EHLLAPI code will cause PF12 to be sent
to the host if the upper right corner button is pressed.

Specifying a TCP/IP Connection
The TCP/IP section of a host connection requires a host address, port
number, connect timeout value, and character display model. An optional
start up file can also be designated.

Host address
The host address can be either a logical name such as MVS or UNIX1, or
an IP address such as 12.1.2.60.

Port number
There is usually a standard port used to connect to a host machine, such
as 23. Please check with your system administrator if you are unsure
what to specify for this setting.

Connect timeout value
The Connect timeout value is the time period (in milliseconds) that gOOi
will wait when trying to connect to the host. An error message is
displayed if gOOi cannot connect within this time limit.

Character display model
Be sure to specify the display model that corresponds to your
environment. The VT220 selection is for running with an
OpenVMS/UNIX host, and the IBM-3278-2 and IBM-3278-2-E choices
are for connecting to an IBM mainframe.

Specifying gOOi generation options and settings

User’s Guide 53

Start up file
The start up file entry allows you to specify a file that contains code for
automating the repetitive task of logging on to a host system. A start up
file uses the host navigation feature of gOOi to enter the data and
keystrokes necessary to bypass host screens that are normally displayed
during logon. gOOi includes two sample files that demonstrate
implementations of the start up feature. The
gOOiStartUpSampleUNIXDigital.txt file logs onto a UNIX host and signs
on to MANTIS as the MASTER user. The
gOOiStartUpSampleMainframe.txt file logs on to an IBM mainframe host,
signs on to CICS, and starts the MANT transaction.

Chapter 3 Preparing to generate gOOi forms

54 P39-5020-00

Specifying an Emulator Connection
The Emulator section of a host connection lists the external emulators
that gOOi supports. If EHLLAPI or EHLLAPI32 is selected, the display
changes as shown in the following example:

To use generic EHLLAPI support, you must specify the name of your
emulator�s EHLLAPI DLL, along with the EHLLAPI procedure name
within that DLL. The default procedure name is hllapi (the name is case
sensitive).

Pause value
The Pause value is the time period (in milliseconds) that the host must be
idle to consider work completed.

For OpenVMS and UNIX, there is no function or flag to verify that the
host is not running a task. For IBM mainframe emulators with EHLLAPI,
the system clock may flicker, falsely indicating that the host data
transmission is complete. Therefore, a Pause value is needed for gOOi
to know when data transmission form the host is complete.

Specifying gOOi generation options and settings

User’s Guide 55

The default pause value is 250 milliseconds. Initially accept the default
value. If you notice unexpected behavior in your gOOi interface, increase
this value. If your gOOi application is working properly but you would like
to improve performance, try decreasing this value. The optimum value
depends on your host and your network speed. Use as low a value as
possible without interrupting an incomplete process.

Just In Time GUI Enabled
The Just In Time (JIT) window of gOOi is available when running with any
of the IBM mainframe emulators that gOOi supports. This option is on by
default, and can be turned off if JIT is not desired.

Emulator Check Interval
The Emulator Check Interval specifies how often gOOi checks the
emulator presentation space for host screen activity. The default value is
250 milliseconds. If gOOi does not seem to respond quickly to host
changes, try decreasing this value. The optimum value depends on your
host and your network speed.

Advanced Options for Emulators
The Advanced button brings up the following window:

Chapter 3 Preparing to generate gOOi forms

56 P39-5020-00

The check box selects whether the emulator should be started during
gOOi Host Monitor start up (emulator .exe and session files must be
designated). If you select this check box, specify a number of retries that
is large enough to allow the emulator to fully initialize before the Host
Monitor attempts to connect.

The entry field for multiple session selection designates the session
name to which gOOi should connect. This field can be used to ensure
that gOOi connects to the desired host session when multiple sessions
are active. In the case of Reflection for UNIX/Digital, the session name
specified on this dialog must match the name specified via the
'Setup>View Settings' menu of the emulator. Within this emulator menu
selection, choose 'OLE Server Name' to enter the session name.

The session name is a single character for the other emulators supported
by gOOi. Please see �Emulator considerations� on page 297 for a
description of how to set this name for the emulator you are using.

Specifying gOOi generation options and settings

User’s Guide 57

Screen Tag option

When using the direct gOOi TCP/IP connection with MANTIS for
OpenVMS/UNIX, start MANTIS with the �gooi� parameter. Do not use
this Screen Tag option.

The Screen Tag option applies only to MANTIS running in an
OpenVMS/UNIX environment. Please refer to the Options Compiler
section of the AD/Advantage MANTIS Facilities OpenVMS/UNIX,
P39-1300 for a description of the Screen Tag Option. If this option is
used, the screen tag must be positioned close to the end of the screen,
and the first character of the Screen Tag string must be '0' or '1'.

This option can improve performance and reliability when running gOOi
with MANTIS for OpenVMS/UNIX via an external emulator. Host
synchronization problems will occur if this option is turned on in gOOi but
not in MANTIS, as gOOi will watch for this tag but will not find it.

Chapter 3 Preparing to generate gOOi forms

58 P39-5020-00

Specifying host field attribute matching
This setting determines whether you want gOOi to match host field
attribute settings. This option instructs gOOi to interrogate settings on
the host, then set the fields on the gOOi form accordingly.

To interrogate host field attribute settings, check any or all of the
attributes you want to use from the host.

If you don�t select any attributes, gOOi ignores the host field attributes.

Field attributes do not apply to OpenVMS/UNIX environments. In
addition, the gOOi TCP/IP connection for IBM mainframes does not
support the Reverse, Underline, and Color attributes.

To specify field attributes:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Click Field Attributes. The following window displays:

Specifying gOOi generation options and settings

User’s Guide 59

3. Check or uncheck the appropriate boxes to select field attributes:

Attribute Description
Protected Prevents the field from being edited
Hidden Prevents the field from being displayed
Reverse Displays the field with reversed foreground and

background colors
Underline Displays a line under the field
High Intense Displays the field with brighter intensity
Color Displays the field in color

Field attribute settings apply to all forms that you generate, but
individual forms can be customized by modifying the attributes
method in ObjectStudio�s Designer or Class Browser. The generated
form name consists of the screen ID name suffixed with Controller
(for example, screen ID WHSE001 has a form name of
WHSE001Controller).

Running with all of the host field attributes unchecked improves
performance. If no attributes are selected, gOOi does not query the
emulator for these attributes when displaying the gOOi form. The
potential impact is most significant for host screens with many fields.

Be careful to select those attributes that are dynamically set for host
screens. For example, if a host screen field is dynamically protected
or unprotected during application execution, select the Protected
check box. This ensures that gOOi looks at the host data stream to
determine the proper response.

If only one form out of a group of forms needs an attribute selected,
modify the attributes method for that form�s controller. For example,
to interrogate the Protected attribute you would change the method
from:
^ {}

to:
^ {#Protected}.

With this strategy, gOOi only queries the emulator for a particular
attribute when presented with a relevant form. You retain a
performance benefit for the rest of the forms because gOOi does not
issue emulator queries for attributes for them.

Chapter 3 Preparing to generate gOOi forms

60 P39-5020-00

4. Click OK to return to the Settings screen.

5. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

Specifying gOOi generation options and settings

User’s Guide 61

Form and Color options
Form and Color options provide parameters to define how to generate
your gOOi forms and to change the appearance of the JIT window.

To specify Form and Color options:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Click Form Options. The following window displays:

Chapter 3 Preparing to generate gOOi forms

62 P39-5020-00

 The Form/Field Colors window also displays when you select Form
Options:

3. Using the pull-down menu in the Form Options window, set the
parent class name.

 If your host application requires function keys and you want to retain
function key operation, a parent class (template) can specify your
function key mapping. gOOi is delivered with these sample
templates:

- IBM3191Controller for IBM hosts (the GOOIGenericController
default parent class has key mapping for IBM hosts, but is not a
modifiable template)

- GOOIVTTerminalController for OpenVMS/UNIX hosts when
using the gOOi direct TCP/IP connection

- ASCIITerminalController for use with KEA!

- Reflection2TerminalController for use with Reflection2

Specifying gOOi generation options and settings

User’s Guide 63

 See �Creating a template for function key mapping� on page 91 for
information about creating a new subclass to define function key
mapping. If in doubt, you can try the appropriate sample. You can
always return later to specify a subclass, then regenerate your
application.

The default GOOIGenericController parent class has key mapping
for using gOOi with IBM hosts. A different parent class, such as
GOOIVTTerminalController, is necessary for appropriate key
mapping when using gOOi with OpenVMS/UNIX hosts.

Chapter 3 Preparing to generate gOOi forms

64 P39-5020-00

The default parent class of GOOIGenericController gives function
key mapping as defined in the Key assignments of Settings. If this
default is used, each generated form will have menu entries for
PFkeys and MiscKeys as follows:

Any changes you make to the key assignments will be reflected in
the menu entries. These menu entries are only appropriate for IBM
mainframe hosts. The sample template for your emulator or user-
created parent classes should be used for OpenVMS/UNIX hosts.

The parent class name can also be used to specify a template whose
controls will be copied to gOOi forms during generation. For
example, using ObjectStudio Designer, you could build a template
named Template1Controller that has a Next button and a Previous
button. As long as Template1Controller is specified as the parent
class, these two buttons are copied to all the forms you generate.
See �Creating an application template for visual items� on page 103
for further information.

Specifying gOOi generation options and settings

User’s Guide 65

4. Set a pop-up parent class name. The parent class name must begin
with an uppercase, alphabetic character.

 If your MANTIS application uses pop-ups and you want to retain
function key operation, a parent class (template) can specify your
function key mapping. gOOi is delivered with these sample pop-up
templates:

- IBM3191PopupController for IBM hosts (the
GOOIPopupController default parent class has key mapping for
IBM hosts, but is not a modifiable template)

- GOOIVTPopupController for OpenVMS/UNIX hosts when using
gOOi with the direct TCP/IP connection

- ASCIIPopupController for use with KEA!

- Reflection2PopupController for use with Reflection2

The default GOOIPopupController parent class has key mapping for
using gOOi with IBM hosts. A different parent class, such as
GOOIVTPopupController, is necessary for appropriate key mapping
when using gOOi with OpenVMS/UNIX hosts.

 See �Creating a template for function key mapping� on page 91 for
information about creating a new subclass to define function key
mapping. If in doubt, you can try the appropriate sample. You can
always specify a subclass later, and then regenerate your application.

The default pop-up parent class of GOOIPopupController gives
function key mapping as defined in the Key assignments of Settings.
If this default is used, each generated pop-up will have menu entries
for PFKeys and MiscKeys as shown in the preceding note concerning
GOOIGenericController.

Chapter 3 Preparing to generate gOOi forms

66 P39-5020-00

5. Check whether to include command line/key simulation (MANTIS
only). This simulation notifies gOOi to generate two entry fields on
line 24 of your generated gOOi forms:

- The first field (positions 1�72) is for the MANTIS command line.

- The second field (positions 74�79) is for the MANTIS key
simulation.

 This is necessary because these two fields are not described in the
UEF file created from your MANTIS application.

 This option does not apply if you generate your MANTIS screen as
an FUL display. If your MANTIS screen is not FUL and you want to
retain these fields, select this check box. Alternatively, the end user
can press ALT+TAB to access the host screen if running with an
emulator, or ALT + D to access the Character Display if using the
gOOi TCP/IP connection. After entering the data, the end user can
press ENTER to return to gOOi from the emulator, or ALT + D to toggle
back from the Character Display.

6. Check whether to hide AD/Advantage keys/descriptions. If you are
using gOOi with AD/Advantage, selecting this check box causes the
PF keys and descriptions from the host screen not to display on the
gOOi form.

7. Set font properties. Text properties allow you to govern the use of
fonts and colors in your generated forms. Use the following
guidelines to adjust these values:

Field Default Description
Fixed
fonts
only

(selected) Restricts the font selection to the
nonproportional fonts available on your
system.

Font
name

Courier Specifies the font for your entry fields
and static text. The list is determined
by the fonts on the developer�s
workstation. If the font is not available
on the end-user workstation, Windows
substitutes the closest font.

Font
size

10 Specifies the font�s point size for entry
fields and static text.

Specifying gOOi generation options and settings

User’s Guide 67

Host screens use nonproportional fonts to ensure uniform text
alignment (each character takes up the same amount of space).
Use a nonproportional font for gOOi forms to maintain proper text
spacing. Nonproportional is the gOOi default.

 For more information, see �Changing a field�s color, font, and/or
justification� on page 169.

8. Set color properties. Color properties let you assign different colors
to your screens, fields, and text as shown in the following table:

Field Default Description
Window
background
color

Dialog Background
Color

Specifies the window
background color

Entry Field
background
color

Entry Field Color Specifies the background
color for entry fields

Entry Field
foreground color

Window Text Color Specifies the foreground color
for entry fields

Highlighted Entry
Fields
background
color

Hilite Background
Color

Specifies the background
color for highlighted entry
fields

Highlighted Entry
Fields
foreground color

Hilite Foreground
Color

Specifies the foreground color
for highlighted entry fields

Protected Field
background
color

Dialog Background Color Specifies the background field
color for protected fields

Protected Field
foreground color

Window Text Color Specifies the foreground field
color for protected fields

Highlighted
Protected Fields
background
color

Menu Hilite Bgnd
Color

Specifies the background
color for highlighted protected
fields

Highlighted
Protected Fields
foreground color

Menu Hilite Color Specifies the foreground color
for highlighted protected fields

Chapter 3 Preparing to generate gOOi forms

68 P39-5020-00

When you select a color, the effect displays in the example box. For
more information, see �Changing a field�s color, font, and/or justification�
on page 169

Some color choices are fixed, while others are standard parameters
of each Windows configuration. This means that if you specify these
standard parameters, your gOOi forms default to the colors specified
on end-user workstations. This has the advantage of causing gOOi
forms to display in the colors that each end user prefers.

This same consideration means that the appearance of your color
choices in the lists are affected by your Windows settings. Thus,
some choices may appear blank because they do not contrast with
the field color. However, if you click these apparently blank options,
they will take effect.

9. Set a background that will be assigned to your gOOi forms during
generation. The window changes according to the Background Type
that you choose. If you select �Bitmap�, you will see the following:

You can specify the Bitmap File to use.

Specifying gOOi generation options and settings

User’s Guide 69

If you select �Color�, you will see the following:

You can choose from a drop down list of logical colors such as
DialogBackgroundColor, and physical colors such as White. Logical
colors are adjusted to the color settings of the PC where gOOi is
deployed. This means that DialogBackgroundColor could be gray on
one PC, but white on a different PC.

Chapter 3 Preparing to generate gOOi forms

70 P39-5020-00

If you select �RGB�, you will see the following:

You can adjust the amount of Red, Green, and Blue to create a
custom color. The Example shows the effects of the changes that
you make to the three slider bars.

10. Set presentation properties. Presentation properties allow you to
easily adjust the appearance of generated forms.

We recommend that you accept the default values for presentation
properties. After generating and viewing the resulting gOOi
interfaces, you can use the following guidelines to assess any
necessary adjustments.

Specifying gOOi generation options and settings

User’s Guide 71

 Use the following guidelines for setting presentation properties:

Setting Units Default Description
Horizontal Repeat
Spacing Factor

0.1 mm 1.75 Specifies the gap between fields
repeated horizontally across the screen.

Vertical Repeat
Spacing Factor

1.0 mm 1.00 Specifies the gap between fields
repeated vertically down the screen.

Character Height 0.1 mm 48.00 Specifies the height of boxes containing
text characters (static or dynamic).

Character Width 0.1 mm 27.00 Specifies the width of boxes containing
text characters (static or dynamic).

X Position 0.1 mm 27.00 Sets the horizontal dispersion value for
all fields displayed on a gOOi form.
Adjust this factor in conjunction with Y
Position.

Y Position 0.1 mm 48.00 Sets the vertical dispersion value for all
fields displayed on a gOOi form. Adjust
this factor in conjunction with X Position.

Font Size Factor 10.00 Governs the size of controls relative to
the font selected. Adjust this factor in
conjunction with Font size to prevent
overlap.

11. Click OK to save any changes and return to the Settings window.

Using hotspots
Hotspots are host screen data descriptions of how the user can invoke a
command via a function key. gOOi can recognize these contextual
function keys and generate a toolbar for them.

For example, a host screen might contain a line that reads:
PF1=Help PF3=Exit PF7=Backward PF8=Forward

gOOi can automatically generate a toolbar that will contain four buttons
for these hotspots. In this example, the toolbar would have buttons that
read: Help, Exit, Backward, and Forward. When the user selects one of
these toolbar buttons at run time, the appropriate function key (for
example: PF1 for Help) is sent to the host.

Chapter 3 Preparing to generate gOOi forms

72 P39-5020-00

To specify hotspot settings:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Click Hotspots. The following window displays:

Specifying gOOi generation options and settings

User’s Guide 73

3. To enable hotspots, select the �Generate a toolbar for contextual
function keys (hotspots)� check box. The hotspot options become
accessible as shown in the following example:

4. Specify whether to generate the toolbar when the application is
generated (static) or at run time (dynamic). Detecting hotspots at run
time is useful if your host screens have large fields for function key
instructions that are filled by the host application. Select the �Remove
the field containing the hotspot� check box (static only) if you only
want a toolbar button and not the on-screen command description.

Chapter 3 Preparing to generate gOOi forms

74 P39-5020-00

5. Specify the button label.

- Choose either the function key name (for example, PF3) or the
command description (for example, Exit).

- If you display text associated with the key, specify the text
patterns that gOOi should look for on the host screen. In the
pattern definition:

- # represents a number,

- @ represents text to extract to the button title,

- ^ indicates that the text to extract is on the next line.

- Examples of text patterns are shown in the following table:

Pattern Matches the strings:
PF## - @ PF01 - Next PF02 - Previous

PF1 - Next PF2 - Previous
Press %ENTER% to @ Press ENTER to Continue
Please press F## to @ Please press F1 to Continue
F##^ F1

Help

 Click Patterns to view example pattern information.

The pattern (Please press F## to @) does not match the string
�please press F1 to Continue� because patterns are case-sensitive.

6. Select the toolbar position (top or bottom of the form).

7. Click OK to return to the Settings window.

Specifying gOOi generation options and settings

User’s Guide 75

8. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

Creating a user toolbar
You can build custom toolbars that invoke keystrokes, start other
programs, or perform specified actions such as showing the host screen.
Toolbar items can be either buttons or icons, and can have associated
tooltips.

To create a user toolbar, perform the following steps:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Click User toolbar. The following window displays:

3. To create a toolbar, select the �Generate a user toolbar� check box.
This enables access to related options.

Chapter 3 Preparing to generate gOOi forms

76 P39-5020-00

4. Enter a toolbar definition file name or click Browse to locate an
existing file. Click Create/Modify to build a new toolbar.

The jitnet.tb file that is installed in the gOOi subdirectory of
ObjectStudio is a sample of a user toolbar.

5. Select a toolbar position (top or bottom). The default toolbar position
is at the top of the gOOi form.

6. Click OK. The following window displays:

To locate and use an existing toolbar definition file, click Load file.

Specifying gOOi generation options and settings

User’s Guide 77

7. Select whether the toolbar item to be added will:

- Invoke a keystroke (select a key from the list)

- Start a program (enter a file name and path or click Browse to
locate the program)

- Perform an action (select an action from the list, or click Define
to specify an action); any Smalltalk method that is available to
your gOOi forms (for example, through parent classes) may be
specified

8. Select whether the toolbar item should be represented as:

- A button (enter the button label)

- An icon (enter the icon file name, or click Select to locate a file)

9. Enter an item description (tooltip; optional, but recommended), or
click Default to automatically insert the action (for example, send
keystroke ENTER) specified in step 7.

10. Click Add item. The button is added to the Resulting Toolbar at the
bottom of the window. Make the desired changes:

- To remove an item from the Resulting toolbar, select the item
and click Remove item.

- To add space between toolbar items, click Add gap (see
�Spacing toolbar items� on page 79).

11. Repeat steps 7�10 for each item that you want to add to the toolbar,
then click Save file.

12. Click Exit to return to the Settings window.

13. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

Chapter 3 Preparing to generate gOOi forms

78 P39-5020-00

Spacing toolbar items
Clicking Add gap on the gOOi Toolbar definition window (see �Creating a
user toolbar� on page 76) provides an interface for specifying how much
space to insert between toolbar items, as shown in the following example:

Enter a value or accept the default (10) and click OK.

Specifying headers and footers
AD/Advantage screens are composed of a header, body, and footer. By
default, the header displays at row 1, the body at row 4, and the footer at
row 21. You can modify these specifications.

The header/footer option may also be used for host screens other than
AD/Advantage. If your host screens use a standard header and footer,
modify the preset AD/Advantage specifications to fit your standards.

To specify header and/or footer settings:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Click Header/Footer, then verify the following:

- The row values for the header, body, and footer are preset and
should be changed only if you have changed the No of rows in
Header-Screen to a value other than 3 in the #PARM transaction
of AD/Advantage.

- The Header file and Footer file fields are preset to the location of
the standard AD/Advantage header and footer. If you have not
customized the AD/Advantage header or footer, verify that the
specified locations are correct for your installation.

Specifying gOOi generation options and settings

User’s Guide 79

3. If you have customized the header and/or footer:

a. Export the customized ADV_HEADER and/or ADV_TRAILER
from the Master user using the Universal Export Facility (UEF).

b. Download the UEF files to your PC.

c. Process these files through gOOi generation and specify their
location in the Header file and Footer file fields. (For specific
information, see �UEF file splitting steps� on page 119 and
�Specifying gOOi form components� on page 127.)

4. Click OK to return to the Settings window.

5. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

Pointing to prompter files
If your MANTIS application uses prompters, gOOi automatically
generates them as scrollable list boxes containing the prompter text.
When you generate a gOOi application, the text is generated on the PC
and stored in files with a .pmt extension. gOOi looks for these files in
whatever path you specify in the Prompter files path field.

Warning: gOOi treats the prompter files path as global data. (It
becomes part of a single gooi.ini file.) Therefore, all MANTIS
applications you intend to deploy to a workstation must have the same
prompter path. If different paths are specified for two gOOi applications
and they are both deployed to the same workstation, the first gooi.ini file
will be overwritten. However, you can specify different prompter files
paths for different workstations.

Chapter 3 Preparing to generate gOOi forms

80 P39-5020-00

To specify the prompter files path:

1. Open the gOOi-Settings window, as shown in �Specifying gOOi
generation options and settings� on page 45.

2. Enter a prompter files path, or click Browse to search for a file. You
can specify a path that does not yet exist.

3. Do one of the following:

- Continue with other gOOi-Settings tasks.

- Click OK to close the gOOi-Settings box and save the changes.

- Click Exit to close without saving the changes.

Specifying gOOi generation options and settings

User’s Guide 81

Using environment-dependent tools
Some of the following tools may be required before you can continue
preparing to generate gOOi forms. Whether these tools are mandatory
or optional will depend upon your environment.

Converting BMS and MFS source files into UEF format
Before gOOi can generate forms from CICS or IMS, they must first be put
into Universal Export Facility (UEF) format. From this common format,
gOOi will generate forms.

If your host application is in MANTIS, go to �Creating a template for
function key mapping� on page 91. If your host application is in IBM
CICS Basic Mapping Support (BMS) format or IBM Message Formatting
Service (MFS) format, convert it into Universal Export Facility (UEF).

To convert BMS files into UEF files, use the BMS Converter. Before
doing so, review the following list of restrictions for host applications to
determine whether you need to adjust your host application.

gOOi restrictions for non-MANTIS host applications
The following restrictions apply to non-MANTIS host applications:

♦ Every host application screen and pop-up screen must have a unique
identifier at the same specified location. This screen ID must have at
least 2 characters (0�9, A�Z). The ID must begin with a letter and
cannot have embedded or trailing blanks.

♦ gOOi does not support wrap-around capabilities for 24 x 80 domain
screens. An example of such a screen would be one in which
horizontal repeats cause a field to span multiple lines.

♦ Currently, gOOi does not support a host screen greater than 24 x 80.

♦ Two screen components cannot be placed side-by-side.

You do not have to define every screen to generate a gOOi application.
If the gOOi HostMonitor encounters an undefined screen in your
application, it presents the Just-In-Time display (if enabled) or the host
screen. However, you must define all pop-ups. If an undefined pop-up is
encountered, your application will become unsynchronized with the host.

Chapter 3 Preparing to generate gOOi forms

82 P39-5020-00

BMS/MFS conversion procedure

The most efficient input for the BMS or MFS Converter is a set of
BMS/MFS source files containing one screen per file. You can convert
BMS/MFS files containing multiple screens with an extra procedure.

When you download your BMS/MFS source files to your PC, do not give
them file extensions. The BMS or MFS Converter adds an .exp
extension to each file during conversion and places these files in the
same directory.

Follow these steps to convert BMS/MFS files:

1. At the gOOi Workplace window, double-click the Tools icon. The
following gOOi Tools window displays:

Using environment-dependent tools

User’s Guide 83

2. Double-click either the BMS Converter or the MFS Converter icon.
The Converter window displays:

3. Click Browse to specify the location of your BMS/MFS files. Select
the first file in the directory and click Open. The path and file name
display in the Input BMS/MFS File field.

Chapter 3 Preparing to generate gOOi forms

84 P39-5020-00

4. Determine whether you can convert the files as a group or whether
you must convert them individually (the Converter uses each existing
file name to create a UEF file with an .exp extension):

- If your BMS/MFS file names do not follow consistent naming
conventions, you must convert each file individually. To do this,
open each file in the Browse window so that the path and file
name show up in the Input BMS/MFS File field. Click Convert.
As you convert files, a list of completed conversions displays in
the middle of the Converter window.

- If your BMS/MFS file names are consistent, you can convert your
files as a group. To do this, open the first file in the Browse
window so that the path and file name show up in the Input
BMS/MFS File field. Edit the file name in the path to the
common file name characters and add an asterisk (*) as a wild
card. For example, if all your BMS/MFS file names begin with
MAP (for example, MAP24, MAPEND, MAP4ID), edit the file
name in the path to read ��\MAP*�. Click Convert. All
BMS/MFS files are converted in succession. A list of the
completed conversions displays in the middle of the Converter
window.

5. Determine whether you need to use the File Splitter:

- If you know that there was only one screen per BMS/MFS source
file, you are now ready to begin specifying your gOOi forms with
your newly converted .exp files. Proceed to �Specifying gOOi
form components� on page 127.

- If you know that (or are unsure whether) there were multiple
screens in any of your BMS/MFS source files, use the File
Splitter on your newly converted .exp files (see �UEF file splitting
steps� on page 119).

Using environment-dependent tools

User’s Guide 85

Capturing IBM mainframe host screens
The Dynamic Screen Capture tool can be used to generate a gOOi form
for any IBM mainframe host screen that has a screen ID. This tool
creates a UEF file that the Application Generator can use.

The gOOi HostMonitor should be started before using this tool. The host
screen that you capture needs a screen ID at the row and column defined
in your current profile.

Follow these steps to open the Dynamic Screen Capture tool:

1. At the gOOi Workplace window, double-click the Tools icon. The
gOOi Tools window displays.

2. In the gOOi Tools window, double-click the Dynamic Screen Capture
icon. The following window displays:

Chapter 3 Preparing to generate gOOi forms

86 P39-5020-00

 The following table describes controls that may be useful for some
host screens:

Control Description
Exclude Specifies that certain fields are not to be included

in the gOOi form.
Include Reverses an excluded field.
Merge Overrides the field extraction that occurs during

Capture Host processing and allows you to select
and combine two fields. For example, selecting
Enter and Name and clicking Merge creates a
single label field.

Field
attributes

Shows the attributes detected for the currently
selected field. You can override these attributes, if
desired. For example, if you know that the host
screen field only accepts numeric input, select
numeric if this box is not selected.

3. Click Capture Settings and verify the emulator and session ID.

4. Click Capture Host to get a snapshot of the current host screen. The
host screen image displays in the Host screen area. All fields
extracted from the host screen image display in the Fields area.
When you select a field, the corresponding area in the Host screen
image is highlighted.

5. Select fields individually, or select multiple fields at once using one of
the following procedures:

- Select a label from the Fields list and click As Label to make it a
label field. The Label fields area is initially empty because labels
cannot be distinguished from protected fields in the 3270 host
stream. However, fields that might be labels are listed in italics.
Verify that the indicated length is correct before designating a
field as a label.

Using environment-dependent tools

User’s Guide 87

- Click Select all to select multiple fields. The following window
displays:

- Select the appropriate check boxes and click Select. For
example, if you know that all the fields listed in italics for row 2
are labels, select italics and the fields at row 2�the italicized
fields for row 2 are all highlighted.

6. Click Generate UEF to create an .exp file in UEF format. This file
can then be input to the Application Generator to create a gOOi form
corresponding to the host screen.

Before exiting the tool, you should save the captured host screen to a
file by selecting File � Save. This will make it easier to update the
generated gOOi form later. The captured host screen can be
retrieved by selecting File � Open.

Chapter 3 Preparing to generate gOOi forms

88 P39-5020-00

Locating screen IDs
If you do not have screen IDs on your host screens, the Screen ID
Locator can determine a suitable location to add these IDs.

The input for this tool is a UEF file containing the screen definitions for
which screen IDs are needed. The Screen ID Locator parses the file and
marks every field position. The result displays as a grid. Cells occupied
by red asterisks represent screen field positions. Cells occupied by
green asterisks represent screen positions where no field is defined. A
set of consecutive green cells is a good candidate for a screen ID
location.

AD/Advantage users do not need the Screen ID Locator when using
gOOi with AD/Advantage. AD/Advantage screen IDs are predefined in
gOOi.

At the Workplace window, double-click Tools, and then click Screen ID
Locator. The following window displays:

Using environment-dependent tools

User’s Guide 89

Use the following procedure to parse a UEF file:

1. Click Browse.

2. Select the UEF file containing the screen definitions and click Open.
The Screen ID Locator parses the file and displays the results in the
grid.

3. To see a cell row and column number, select it. The coordinates are
displayed at the bottom of the window. To magnify or reduce the
view of the grid, click �+� or �-�.

When you identify the location where you intend to insert screen IDs in
your host application, click Exit to return to the gOOi Workplace window.
Specify your intended screen ID location on the Settings window.

Chapter 3 Preparing to generate gOOi forms

90 P39-5020-00

Creating a template for function key mapping

This feature does not apply to the Just-In-Time window, which always
uses the Key assignments from Settings.

A template is a named group of properties that provides inherited
behaviors for generated forms. Templates can include key mapping,
visual items, and methods. This section addresses the most basic
inherited behavior required by most applications: function key mapping.

To learn the procedures for providing inherited visual items and methods,
see �Creating an application template for visual items� on page 103.

Creating a template for function key mapping

User’s Guide 91

The default parent classes of GOOIGenericController and
GOOIPopupController in Settings give function key mapping as defined
in the Key assignments of Settings. If these defaults are used, each
generated form and pop-up will have menu entries for PFkeys and
MiscKeys as follows:

Any changes you make to the key assignments will be reflected in the
menu entries. These menu entries are only appropriate for IBM
mainframe hosts. The sample template for your emulator or user-
created parent classes should be used for OpenVMS/UNIX hosts. If the
function key mapping built from key assignments is suitable for your
environment, you can skip this section.

Chapter 3 Preparing to generate gOOi forms

92 P39-5020-00

gOOi allows you to establish function key operation for your applications
on a global scale, or by application. For example, the ESC key on the PC
keyboard can equate to the IBM mainframe PA2 key in all your
applications. Alternatively, some applications could use ESC to equate to
PA2 while others could equate PGDN (Page Down) with PA2.

If you use the IBM3191Controller sample template for IBM mainframe
hosts, your gOOi application automatically inherits methods for keys
PA1�PA3, and PF1�PF24.

To create your own template for function key mapping, subclasses of
GOOIGenericController and GOOIPopupController must be established
to override the key assignments that are provided by these two classes.

The Template Hierarchy Browser makes it easy to create subclass
templates of these general controllers and to define function key
operation for those subclasses. The default sample templates delivered
with gOOi were created in this manner. If the sample template is not
exactly what you need, you can create a subclass and modify that.

We do not recommend modifying a Cincom-provided controller; you
should create a subclass instead.

Because gOOi is object-oriented, you define key mapping once for all
affected screen and pop-up interfaces. All newly-generated interfaces
inherit from the template subclass.

If you later add a new function key to your application, it is unnecessary to
create a new subclass template. You can go directly into the Function
Keys Definition window from the gOOi Workplace and map the new key
to your existing template. Key mapping performed through Function
Keys Definition is dynamically inherited�it is unnecessary to regenerate
your forms.

Every mapped function key displays in a pull-down menu on the
generated form. To execute a function, the user can either select the
menu item or press the defined key sequence. The gOOi developer
must define the name of the menu as well as the name of the menu item.
For example, you can specify that when F1 is pressed, the application
sends an @1 command to the host (for IBM hosts). You can attach this
sequence to the Show List item in the Action menu.

Creating a template for function key mapping

User’s Guide 93

The Function Keys Definition tool also allows you to export and import
these key mappings to and from text files.

You can store a key mapping in a text file without attaching it to a
particular class by using the Export and Import options of the File menu.

The following steps create a subclass of the class
GOOIGenericController (for example, MyController). Later, you select
your subclass as the parent class when you specify your form generation
options. The same steps apply to creating a subclass of the
GOOIPopupController or the IBM3191Controller. For information about
modifying or copying a template subclass for function key maps, see
�Modifying a function key map file� on page 100 and �Copying a function
key map file� on page 101.

To create a template subclass for function key maps, perform the
following steps:

1. In the gOOi Workplace window, double-click the Template Hierarchy
Browser icon to open the Browser window. If you click the small box
to the left of the GOOIGenericController class name, the class tree
expands. A further expansion reveals all the controllers delivered
with the gOOi product. The following example displays the
deliverables for an IBM user:

Chapter 3 Preparing to generate gOOi forms

94 P39-5020-00

2. Select GOOIGenericController in the tree view box and click Add
class. The following window displays:

3. In the Class name field, enter the class name. A class name should
begin with a capital letter. gOOi automatically appends "Controller" to
your class name. Therefore, if you specify a class name of "My"
gOOi creates a class called "MyController".

4. Click OK. The Save As window displays:

Creating a template for function key mapping

User’s Guide 95

5. Save your controller in the \GOOI\CUSTOM subdirectory of
ObjectStudio. The default installation path is:
…PROGRAM FILES\OBJECTSTUDIO\GOOI\CUSTOM

 Saving your file in the CUSTOM directory ensures that any
controllers you create are not overwritten by gOOi product upgrades.
Make sure the file type is .cls. Click Save. When you return to the
Template Hierarchy Browser window, your newly-created class
displays in the class tree as follows:

6. To create a pop-up controller subclass:

a. Select GOOIPopupController and click Add class.

b. Perform steps 3�5.

c. After completing steps 7�11 for your GOOIGenericController
subclass, repeat steps 6�11 for your GOOIPopupController
subclass.

Chapter 3 Preparing to generate gOOi forms

96 P39-5020-00

7. Select your new class (for example, MyController) and click Function
keys. The Function Keys Definition window displays. Your controller
name is in the Controller field (minus the Controller suffix):

Creating a template for function key mapping

User’s Guide 97

8. Perform the following steps for every function key you want to map
(an example window follows):

a. Enter a name in the Menu header field. The menu header is the
name that displays on the menu bar (for example, Record).

b. Enter a name in the Menu item field. A menu item is a command
that displays in a menu (for example, PAGE UP).

c. Select a key in the Function key drop-down list (for example,
PAGE UP). This is the key that will execute the command. To
define a keystroke combination (for example, CTRL+F3), click the
combination key box(es) and select or enter a character in the
leftmost field. Your combination displays in the rightmost field.

d. In the Host sequence field, enter the command to send to the
host when the selected function key or key combination is
pressed.

IBM mainframe: A default IBM3191Controller and a default
IBM3191PopupController are provided. The key mapping for
these controllers reflects the �Host-PC translation tables� on
page 311. This table is also provided in Help. Default ASCII
controllers are also provided. See �Host-PC translation tables�
on page 311 for their key mapping.

OpenVMS/UNIX gOOi TCP/IP: The values for the Host
sequence field are specified as the sequence of individual keys
pressed, separated by commas. For example, specify PF10 as
F2,1,0, which represents pressing the F2 key, then the 1 key,
then the 0 key. Retrieve the gOOiVTTerminal controller to see
examples of Host sequences.

Reflection for Digital/UNIX emulator: The values for the Host
sequence field can be found in the rwinapi.txt file that is within
the emulator�s directory structure. Retrieve the
Reflection2Terminal controller to see examples of using these
values in Host sequences.

Chapter 3 Preparing to generate gOOi forms

98 P39-5020-00

KEA! emulator: The values for the Host sequence field can be
found using the KEA! SmartPad definition window (in KEA!,
select Options � SmartPad). When the KEA! keyboard is
visible, selecting a key sequence using your mouse fills the
Value field. Retrieve the ASCIITerminal controller to see
examples of using these values in Host sequences.

e. Click Add. The values that you entered display in the list at the
bottom of the window.

 Repeat steps 8a through 8e for each function key you want to map.
The following window displays a key mapping in progress for the
example MyController template:

Creating a template for function key mapping

User’s Guide 99

9. When you have defined all the key mappings for your controller, click
Generate. When prompted to confirm the update, click Yes. Your
controller is saved to the directory you specified in step 5 and you
return to the Function Keys Definition window. See �Editing your
loadable application� on page 102 for information about loading a
new controller with the loadable application.

10. Exit the Function Keys Definition window. You return to the Template
Hierarchy Browser window.

11. At the Browser window, click Exit. You return to the gOOi
Workplace. You are now ready to create your .exp files with the File
Splitter (for MANTIS applications) or to convert your host screens
files into UEF format (for non-MANTIS applications).

Modifying a function key map file
You can modify a controller that already has key mappings.

You can store a key mapping in a text file without attaching it to a
particular class by using the Export and Import options of the File menu.

The instructions in this section assume that the Function Keys Definition
window is displayed (see step 9 in �Creating a template for function key
mapping� on page 91).

To modify a key map, follow these steps:

1. In the Controller field, select the name of the controller you want to
modify and click Retrieve. The function key mappings are listed at
the bottom of the window.

2. Double-click the key map record you want to change. The listed
values display in their appropriate fields in the upper part of the
window.

3. Delete the key map record from the list, modify the values in the
fields, and click Add.

To remove a mapping, select the mapping from the list and click Delete.
The file is updated according to your changes.

Chapter 3 Preparing to generate gOOi forms

100 P39-5020-00

Copying a function key map file
You can copy function key definitions from one controller to another. The
instructions in this section assume that the Function Keys Definition
window is displayed (see step 9 in �Creating a template for function key
mapping� on page 91).

To copy key definitions, follow these steps:

1. Select the source controller in the drop-down list and click Retrieve.
The function key mappings for that controller display at the bottom of
the window.

2. In the Controller field, select the name of the target controller and
click Generate. The key mappings are copied to your target
controller.

Creating a template for function key mapping

User’s Guide 101

Editing your loadable application
After creating a new controller (for example, creating a template
subclass), when you load gOOi, your new controller displays in the
available controller hierarchy. On a subsequent loading of gOOi, you
have to explicitly load the controller (using Load file) or edit your loadable
application.

The gOOi Developer application is contained in the gooidev1.txt file, and
the gOOi Runtime application is listed in the gooirun1.txt file. These files
are located in the directory where ObjectStudio is installed. The following
example shows the contents of gooidev1.txt:

To add your new controller class to this list of classes, insert a line that
specifies the proper name and location. For example, if you have put the
new controller class into the custom directory of ObjectStudio under the
name of funckeys.cls, you would add this line to the file list:

custom\funckeys.cls

Be sure to add this line after �gooi\gooigenc.cls�, which is the file for
superclass GOOIGenericController and must precede your new file.

Chapter 3 Preparing to generate gOOi forms

102 P39-5020-00

Creating an application template for visual items
A gOOi application often parallels a host application. For example, if you
have a Credit application on the host made up of 40 screens, you would
likely define all 40 of these screens to gOOi under an application name of
Credit. You may want all of the generated gOOi forms for Credit to have
common visual items for consistency in appearance and user interaction.
gOOi makes it easier to achieve this consistency by using an application
template.

Visual items can be assigned to an application template that is used by
the gOOi Application Generator. The template is an interface created via
the ObjectStudio Designer that contains visual items such as buttons.
When the generator is run, all gOOi forms created during generation will
inherit the visual items from the template.

For example, you want OK and Cancel buttons on all the gOOi forms in
an application. First, using the ObjectStudio Designer, you add these
push buttons into an ObjectStudio interface. Next, you specify this
interface in �Settings � Form Options � Parent class name�. Finally, run
the Application Generator and it will use this interface as a template for
visual items. All gOOi forms generated with this template will include OK
and Cancel buttons. Specific actions can be assigned to these buttons
after the forms are generated.

Creating an application template for visual items

User’s Guide 103

Application template inheritance
Application template inheritance operates under the following conditions:

♦ Because gOOi is an object oriented system, gOOi forms inherit
behaviors from superclasses in the class hierarchy. The application
template is the next level higher superclass of all the gOOi forms in a
gOOi application. gOOi forms also inherit behaviors, but not visual
objects, from the superclasses that are above the application
template class in the class hierarchy.

♦ gOOi looks for visual objects only in the parent class (or pop-up
parent class) specified in Settings � Form Options.

♦ Your specified parent class becomes the superclass of the gOOi
forms that you generate for your gOOi application.

♦ Key mapping and methods (including methods associated with visual
objects) exhibit dynamic inheritance. In other words, if you change
key mapping or method properties, the new properties are
immediately and automatically inherited by their subclasses. No
regeneration of the gOOi application is required.

♦ Visual objects exhibit static inheritance. In other words, if you add
visual objects to a template, they are only copied into gOOi forms
during gOOi application generation.

♦ The application template has a specific name requirement. The
name must be the name of the gOOi application. This name is case
sensitive, so gOOi will not recognize a template named �CREDIT�
during generation of an application named �Credit�.

♦ If you do not create an application template prior to application
generation, the gOOi Application Generator will create one according
to the name requirement described above. This template is created
so that it is easy to add behaviors (methods) in a single place that
immediately become available via inheritance to all the gOOi forms in
the application. The template produced by the generator is a stub
class that contains only a few necessary methods which do not affect
the gOOi forms.

The following illustration shows an example class hierarchy. The
application template class provides both static and dynamic inherited
behaviors to a gOOi application:

Chapter 3 Preparing to generate gOOi forms

104 P39-5020-00

In this case, the application template has visual objects and is specified
as the parent class. The visual objects from the template are copied to
the gOOi application forms during generation. The methods are common
functionality that was added after generation.

If changes are made to the template methods and visual objects after
form generation, the gOOi application dynamically inherits the method
changes. Changes to template visual objects will not take effect unless
the forms are regenerated.

Steps for creating an application template for visual items
Creating an application template for assigning visual items to a gOOi
application involves the following tasks:

1. Creating an interface (controller)

2. Adding visual items to the interface

3. Making your interface the parent class for generation

4. Generating and testing application forms

GOOIGenericController
(supplied with gOOi)

application template

Method1 Method2 Method3

VisualObj1 VisualObj3VisualObj2

Generated application forms
Form1 ……. FormN

Creating an application template for visual items

User’s Guide 105

Details for each of these steps follow:

1. From the ObjectStudio desktop, run the Designer by clicking the
�Create new Interface� icon, or by selecting File � New � Interface
from the menu. The �Select Controller Type�� window displays.
Expand the hierarchy under EventController until the interface with
your key mapping appears in the window, then click on this interface
to select it. If you are using the gOOi direct TCP/IP connection, the
default key mapping is in GOOIGenericController (IBM) or
GOOIGenericVTController (OpenVMS/UNIX). In the below example,
GOOIGenericController has been selected:

 Enter your gOOi Application name into the Name field. Name is a
case sensitive field, so �CREDIT� is not equivalent to �Credit�. Click
OK, and the following empty ObjectStudio Designer interface window
displays:

Chapter 3 Preparing to generate gOOi forms

106 P39-5020-00

2. Add one or more visual items (for example, OK and Cancel buttons)
to the controller. Appropriate actions can later be assigned to the
item(s) following form generation. Create a button as follows:

a. In the ObjectStudio Designer, select Formitem � New Item from
the menu. You see the New Item window.

b. Enter a button name in the Name field. Click the Button icon.
When you click OK, the button displays on the interface.

When you click an icon, the type description (for example, Button)
displays near the top of the window. If you click in the empty space
between the icons with mouse button 2, then click List, the icons and
their associated descriptions are presented in alphabetic order.

c. Select File � Save. Save the interface as a .cls file using the
Application name. For example, save a template for the Credit
application as Credit.cls.

d. Select File � Exit. Your new controller displays as an icon in the
ObjectStudio Work Area.

Creating an application template for visual items

User’s Guide 107

The ObjectStudio Designer automatically puts your new interface in
the Work Area. However, if you exit ObjectStudio and return or
make changes to your controller, you must explicitly load the
controller file by clicking mouse button 2 in the Work Area and
selecting �Load file��. After generation, this template interface class
is included in the list of gOOi forms that make up an application.

3. Make your new controller the parent class for generation as follows:

a. With your new controller in the ObjectStudio Work Area, double-
click the gOOi Developer icon. The gOOi Developer Workplace
window displays.

b. Double-click the Settings icon, and the Settings window displays.

c. Click Form Options, and the Form Options window displays.

d. Select the name of your new template interface from the Parent
class name drop down list. The name will be suffixed with
�Controller�, as in �CreditController�. This action directs the
Application Generator to use your new controller as the template
for generating gOOi forms. Click OK to return to the Settings
window.

e. Click OK to return to the gOOi Developer Workplace.

Chapter 3 Preparing to generate gOOi forms

108 P39-5020-00

4. Test and generate the application forms as follows:

a. Double-click the gOOi Application Generator icon. The
Application Generator window displays.

b. Specify an Application Name that matches the name used for the
template class. The name is case sensitive.

c. Click Browse to locate and open an existing .exp file to test your
new template.

d. With your .exp file name in the File name field, click Add item to
form to assign the file to Form 001 in the lower part of the
window.

e. Click Preview to display the gOOi form. Check the form to verify
that the visual items from the template are displayed. It is likely
that the visual template items will not be displayed at the location
where you want them to be. Item location is easy to change after
generation. It is also possible that you may not see the template
visual items that were copied into the gOOi form. This situation
can occur when the position of the template items conflicts with
items generated from the host screen file. In this case, try going
back into the Designer for the template and moving its visual
items to other locations, then rerun Preview. In the event that
problem continues, please check that the template is correctly
specified in Settings as the �Parent class name�.

f. Once you are have verified via Preview that the visual template is
working, you can proceed to build the application layout and
generate your gOOi application. Please see �Generating gOOi
forms� on page 125 for details on this process.

With your new template class specified as the parent class, all gOOi
forms in the application will be generated with the visual items from the
template. You can then assign method to these items. For example, it is
easy to specify that the ENTER key is sent to the host when the OK
button is clicked. For information about creating an event-driven button,
see �Additional customizations� on page 190 and �Example of an event-
driven customization� on page 203.

Creating an application template for visual items

User’s Guide 109

Chapter Preparing to generate gOOi forms

110 P39-5020-00

4
Downloading screens from MANTIS

Methods for transferring UEF screen images
Before you use the Application Generator to create gOOi forms, you must
save the desired MANTIS screen images in UEF format on your desktop
(that is, the PC or workstation). There are two methods for transferring
UEF screen images from the host to the PC: via the Host Monitor or
using FTP.

User’s Guide 111

Using the Host Monitor

The gOOi forms shown in this section are from the IBM mainframe, and
may differ slightly in appearance for OpenVMS/UNIX.

To obtain UEF images of screens using the Host Monitor, you must first
specify how the Host Monitor is to connect to the host, either through a
direct gOOi TCP/IP connection, or via an emulator. To obtain UEF
images of screens using the Host Monitor:

1. Start the Host Monitor, then choose File � Host Connection from the
menu. The following window displays:

2. Specify the connection parameters for your environment, then click
OK.

Chapter 4 Downloading screens from MANTIS

112 P39-5020-00

3. Click Start on the following window to begin a host session:

Using the Host Monitor

User’s Guide 113

4. Use this session to access the MANTIS Universal Export Facility
(UEF). At the UEF menu, indicate that you want to export (that is,
choose a Direction of EXP), set Directory to Y, and select SCREEN
as the entity type. The following directory of screens then displays on
a customized gOOi form:

Chapter 4 Downloading screens from MANTIS

114 P39-5020-00

5. Select the screen(s) for which you want a UEF image. Then set the
Apply to desktop option from either the menu bar or the toolbar.
Press ENTER to save the screens to your desktop.

A Save As window, such as the following, displays for each screen
selected:

6. Respond to each dialog with the name of the PC file where you want
to save the UEF image. This approach allows you to select multiple
screens at a time.

You can also download a UEF image to the PC from the MANTIS Screen
Design Facility.

Using the Host Monitor

User’s Guide 115

To do so, use the Screen Design Library Functions to fetch the screen for
which you want a UEF image.

Choose Library Functions again, set the Apply to desktop option from
either the menu bar or the toolbar, then select Replace.

A Save As dialog displays. Specify the name and location for a file, and a
UEF image will be stored there.

Chapter 4 Downloading screens from MANTIS

116 P39-5020-00

Using FTP
You can also transfer UEF information from the host to the PC via the
FTP tool of your choice. To do so:

From the MANTIS Universal Export Facility, export all the screens for
which gOOi forms are to be generated. The standard export process
creates the UEF images on a VSAM ESDS cluster on an IBM host, or on
a sequential file on OpenVMS/UNIX.

If you use an IBM host, run a REPRO job to copy the contents of this
ESDS cluster to a sequential data set. (This sequential data set must be
defined as variable, with a record length of 258.). No equivalent to
REPRO is necessary for an OpenVMS/UNIX host since the export places
the data in a sequential file. Use your FTP software to copy this
sequential data set to the PC.

If you are an IBM mainframe MANTIS user, please see �IBM mainframe
considerations� on page 293 for details concerning UEF processing.

Before downloading a single UEF file with multiple screens/prompters
from the host, you should give it a .txt extension to distinguish it from the
.exp files that will be generated from it. If your UEF file contains a single
screen/prompter, give it a .exp extension before downloading.

Using FTP

User’s Guide 117

Creating .exp files with the File Splitter
After specifying host screen settings and gOOi form generation options,
completing any pregeneration tasks appropriate for your environment,
and creating any key map or visual item templates that may be required,
you can do one of the following:

♦ Split your UEF file into .exp files for use by gOOi. Before doing so,
survey the list of restrictions that apply to MANTIS applications to
determine whether you need to make any adjustments to your
MANTIS application (see �gOOi restrictions for MANTIS applications�
on page 118).

♦ Split the .exp files that you converted from BMS or MFS source files
in the previous section. Skip to the numbered steps in �UEF file
splitting steps� on page 119.

gOOi restrictions for MANTIS applications
The following restrictions currently apply to MANTIS applications:

♦ It is preferred, but not required, that every MANTIS application
screen and pop-up screen must have a unique identifier at one of the
specified screen ID profile locations. This screen ID must have at
least 2 characters (0�9, A�Z). The ID must begin with a letter and
cannot have embedded or trailing blanks. Using Dynamic
CONVERSE to display host screen IDs at a position other than the
one at which they were designed is not recommended. For more
information, see �Rules for screen IDs and MANTIS prompter IDs� on
page 307.

♦ Every MANTIS application prompter must have a unique identifier.
This identifier must be at least two alphanumeric characters in length,
begin with a letter, and be in parentheses at the end of the prompter
description. For more information, see �Prompter ID rules� on
page 310.

♦ gOOi does not support wrap-around capabilities for 22 x 80 domain
screens. An example of such a screen would be one in which
horizontal repeats cause a field to span multiple lines of the screen.

♦ Currently, gOOi does not support a MANTIS screen larger than 24 x
80.

♦ Two screen components cannot be placed side-by-side.

Chapter 4 Downloading screens from MANTIS

118 P39-5020-00

♦ gOOi handles vertical repeats of 255 as ending on line 22, rather
than dynamically adjusting them according to the number of rows on
the display.

You do not have to define every screen to generate a gOOi application.
If the gOOi HostMonitor encounters an undefined screen in your MANTIS
application, it presents either the Just-In-Time window (if enabled) or the
emulator host screen. However, you must define all pop-ups for
generated gOOi forms. If an undefined pop-up is encountered while
gOOi is processing a generated form, your application will become
unsynchronized with the host.

UEF file splitting steps

MANTIS users: It is recommended that you generate one UEF file from
your MANTIS application, download it to the developer�s PC, and run it
through the File Splitter. Even if you have generated multiple UEF files,
use the File Splitter. The File Splitter ensures that there is only one
MANTIS screen or prompter object per file. If you are unsure whether
you have one object per file, use the File Splitter on each file.

For gOOi to generate forms, there must be only one MANTIS screen or
prompter definition per file on the PC. The File Splitter looks at your UEF
file and generates one .exp file per MANTIS object. These files are
placed in the same directory as your original UEF file.

Before downloading your UEF file with multiple screens/prompters from
the host, it is recommended that you give it a .txt extension to distinguish
it from the .exp files to be generated from it. If your UEF file contains a
single screen/prompter, give it a .exp extension before downloading.

Creating .exp files with the File Splitter

User’s Guide 119

To split a MANTIS UEF file or an .exp file converted from BMS format,
perform the following steps:

1. On the ObjectStudio Workplace Desktop, double-click the gOOi
Developer icon. The following two windows are displayed:

Chapter 4 Downloading screens from MANTIS

120 P39-5020-00

2. Double-click the File Splitter icon on the gOOi Tools window. The
following window displays:

3. Click Browse to locate a downloaded UEF extract file (this example
assumes one UEF file) and to choose a location for the .exp files that
are output from the split.

Creating .exp files with the File Splitter

User’s Guide 121

BMS users: If you are splitting .exp files converted from BMS source
files, perform the following steps as if each converted .exp file is the
UEF file under discussion. In other words, perform all steps for each
multiple-screen .exp file that was output from the BMS Converter. As
soon as you bring a converted .exp file into the File Splitter, you can
see whether it contains multiple screens. (The File Splitter does not
split a file with only one screen.) The File Splitter splits multiple-
screen files into new .exp files and places them back in the same
directory. Later, you must be able to distinguish between single-
screen and multiple-screen .exp files to use the gOOi Application
Generator. The Print function is helpful for later reference on how
the file was split.
Important! Any existing files of the same name in the target
directory will be overwritten without warning.

The following window displays:

4. Select the target directory from the drop-down list. The resident files
display. Click your UEF file name. The name displays in the File
name field.

Chapter 4 Downloading screens from MANTIS

122 P39-5020-00

5. Click Open. The File Splitter window displays your UEF input file
selection and the path where the individual files will be placed
following the split. Be default, the Splitter will create the .exp files in
the same folder where the input file is located:

If your UEF file includes multiple instances of the same screen or
prompter, every occurrence except the last is designated �duplicate�
in the Type column. In such a case, the File Splitter only generates a
file for the last instance of the object encountered.

Creating .exp files with the File Splitter

User’s Guide 123

6. When you click Split, the input file is parsed to identify Screen and
Prompter entities. These entities are listed under the �File
components�, �Type�, and �Output File� columns. You are prompted to
confirm the operation, as shown in the following window:

 The File Splitter generates as many files as there are unique objects

in the list, and places them in the same target directory. Any existing
files of the same name in the target directory will be overwritten
without warning.

7. Click Yes. A verification displays as follows:

8. Click OK. You return to the File Splitter window.

9. It is recommended that you print the results of the split for later
reference.

10. At the File Splitter window, click Exit. You return to the gOOi Tools
window.

11. Close the gOOi Tools window. You return to the gOOi Workplace
window.

File splitting is complete. You are now ready to specify the host screen
components of your gOOi application.

Chapter 4 Downloading screens from MANTIS

124 P39-5020-00

5
Generating gOOi forms

Overview of gOOi forms generation
After completing the following preparation tasks, you are ready to begin
generating gOOi forms:

♦ Specifying host screen configuration settings and gOOi form
generation options (see �Specifying gOOi generation options and
settings� on page 45 for more information).

♦ (Optional) Perform pre-generation tasks, which are optional
depending upon your environment (see �Using environment-
dependent tools� on page 82 for more information).

♦ (Optional) Creating a template for function key mapping. Default
templates are provided for all environments, and dynamic keyboard
mapping is available for IBM mainframe users (see �Creating a
template for function key mapping� on page 91 for more information).

♦ (Optional) Creating a template for visual items (see �Creating an
application template for visual items� on page 103 for more
information).

♦ (Optional) Creating .exp files using the File Splitter (see �Creating
.exp files with the File Splitter� on page 118 for more information).

If you did not complete the preparation tasks, you should do so
before continuing.

User’s Guide 125

Generating gOOi forms in the default ObjectStudio format involves the
following procedures:

1. Specify gOOi form components.

2. Generate gOOi application forms.

Both of these procedures are discussed in this chapter.

The generation process produces gOOi forms, each of which consists of:

♦ An ObjectStudio controller. A visual object that can be customized
in ObjectStudio Designer.

♦ A gOOi HostObject. A non-visual object that contains host screen
information. The host screen information is presented through the
controller (the visual component of the gOOi form).

The separation of the host screen information into the host object allows
you to regenerate the HostObject without losing any customizations that
have been made to the controller.

After you have generated your forms, you can deploy them to end-user
workstations (see �Deploying a gOOi application� on page 259).

The appearance of generated gOOi forms (interfaces) can be affected by
moving them from finer to coarser display resolutions. Before gOOi
application generation, set the resolution of your developer workstation to
the coarsest resolution that will be displayed on any end-user
workstation.

In other words, if your developer workstation has 1024 x 768 resolution,
and you are going to deploy the gOOi application to an end-user
workstation with 800 x 600 resolution, set your developer�s resolution to
800 x 600.

The font size must also be considered. If your target end-user
workstations use large fonts, ensure that your developer�s workstation
uses large fonts.

Chapter 5 Generating gOOi forms

126 P39-5020-00

Specifying gOOi form components
Once you have .exp files with one host screen object per file, you are
ready to create gOOi forms for your host screens. To do this, you must
specify each host screen component by extract file and type.

MANTIS users: Extract file types can consist of headers, footers,
screens, pop-ups, menus, and prompters. When the File Splitter parsed
your UEF file, it looked for only screen and prompter objects. For the file-
splitting process, headers, footers, screens, pop-ups, and menus were
classified as screens. Once the UEF file is split, each object file must be
specified to gOOi by its exact type. Each of these types is explained later
in this chapter.

gOOi form generation restrictions
The following restrictions apply to gOOi form generation. None of these
items prevents you from generating gOOi forms, but the results may be
unsatisfactory:

♦ gOOi does not support wraparound capabilities for 22 x 80 domain
screens.

♦ gOOi does not support a host screen greater than 24 x 80.

♦ Two screen components cannot be placed side-by-side.

♦ If a screen serves as a menu, gOOi can generate the menu options
in a list box if the screen design meets certain requirements. Select
the menu type for your menu screen only if the following conditions
are met:

- The screen has an unprotected numeric field.

- Menu options are in the following format:

 first-option-name

 second-option-name

 [and so on]

Specifying gOOi form components

User’s Guide 127

Even if these conditions are met, you can elect to define the menu
screen to gOOi as a screen type rather than as a menu type. The
following Just In Time window illustrates a simple host screen that
could be defined to gOOi as a menu or as a screen:

Chapter 5 Generating gOOi forms

128 P39-5020-00

MANTIS users
The following restrictions apply to MANTIS users:

♦ The status line on a gOOi form is generated using all the information
from the 23rd line (message line) of the MANTIS screen if the map
attribute is not FUL. If the map attribute is FUL, then no status line
generates. You can get information to the status line by using
SHOW with a semicolon in your MANTIS program.

♦ You cannot use the 24th line of a MANTIS screen for data input
unless you authorize command line/key simulation generation (select
Settings � Generation Options).

♦ We do not recommend using Dynamic CONVERSE to display host
screen IDs at a position other than the one at which they were
designed.

Specifying gOOi form components

User’s Guide 129

Form component specification steps
To specify your host screen components for gOOi interface generation,
perform the following steps:

1. From the gOOi Workplace window, double-click the gOOi Application
Generator icon. The following window displays:

Chapter 5 Generating gOOi forms

130 P39-5020-00

2. Click Browse, or select the Browse extract path in the Options menu.
The following window displays:

3. Select the drive and directory containing the .exp files generated from
your host application. All .exp files are in the same directory.

4. Select a file and click Open. The Application Generator window
displays. The Path field contains your selected path. The File name
field contains the first listed file.

Specifying gOOi form components

User’s Guide 131

5. To view the UEF file listed in the File name field, click Edit. The
following window displays:

AD/Advantage requirements: Ensure that the header and footer
information is in place and the AD/Advantage screen ID profile has
been selected (see �Specifying headers and footers� on page 79). In
the Application Generator, make sure that the Use default
header/footer check box is selected.

6. In the Application Name field, enter a name for the gOOi application
to be generated for your host application. Use a maximum of 32
characters with no extension. This name is used to create a folder
on the ObjectStudio desktop to store the icons for the interfaces you
generate.

Chapter 5 Generating gOOi forms

132 P39-5020-00

7. Determine the method by which you will generate your gOOi
application. There are two possibilities:

- If all the .exp files created from your host application are of file
type Screen or Prompter, you can use the Add All UEF files as
forms feature. Add All is designed to quickly generate a gOOi
application when the source host application is a straightforward
series of screens and prompters. Add All populates the
application layout with one .exp file per gOOi form. If your .exp
files meet this condition, proceed to step 8.

- If the .exp files created from your host application are a mix of file
types (for example, screens and prompters plus headers,
footers, pop-ups, and menus), you must specify each gOOi form
individually. If your .exp files meet this condition, proceed to
step 9.

8. If you are going to use the Add All feature (see the first bulleted item
in step 7), click Add All UEF files as forms. gOOi populates your
application layout with one .exp file per gOOi form. Proceed to step
12.

When you click Add All UEF files as forms, you see as many Form
IDs listed in the lower left as there are .exp files. However, you will
see only one record in the remainder of the table (for Host Screen
Name, Type, Extract files, and Converse). This is because you are
viewing the details for Form001 only. To view details for other forms,
click another Form ID.

Specifying gOOi form components

User’s Guide 133

9. If you are going to specify forms individually (see the second bullet in
step 7), perform the following steps for every gOOi form you want to
generate for your host application:

Although it may be logical to specify screens for gOOi in the order in
which they appear in the host application, it is not mandatory to do
so. The important thing is that each screen has its components
specified correctly and that these components are associated with
the correct .exp files.

a. From the Form ID list, select Form001 to begin an application
layout. (After completing Form001, click �+� to move to
subsequent forms.)

b. In the File Type box, select the type of .exp extract file that
corresponds to the component you are specifying.

You can specify host screen components in any order, with one
exception. If a host screen consists of multiple screen
components (upper and lower screens), you must specify the
screen components in order from top to bottom.

Chapter 5 Generating gOOi forms

134 P39-5020-00

Specify the following options for File Type as appropriate:

Option Description
Header MANTIS users: Creates the first lines of the generated gOOi form.

Every other component extract file generates lines following the
header. A form can only have one header.
AD/Advantage users: You must select the Use default header/footer
check box must be selected so that when you specify the UEF Input
File(s), a File Type of Screen, then click either the Add item to form
or Add All UEF files as forms button, gOOi automatically includes the
necessary AD/Advantage header and footer with each screen.

Screen Creates lines on the generated form. If a header is selected, the
lines generated using the screen file are placed after it. If no header
is defined, the lines display starting at the first line. There can be
more than one screen extract file associated with a Form ID. The
generated content of each component screen extract file displays in
sequential order separated by one blank line.

Footer MANTIS users: Creates lines at the bottom of the generated form.
AD/Advantage users: You must select the Use default header/footer
check box so that when you specify the UEF Input File(s), a File Type
of Screen, then click Add item to form or Add All UEF files as forms,
gOOi automatically includes the necessary AD/Advantage header
and footer with each screen.

Pop-up MANTIS users: Creates a standard pop-up window corresponding to
the pop-up currently in use in the host application. Pop-up forms
cannot be generated alone. They must always be defined as a form
specification component. For each gOOi Form ID, you must define
each pop-up that displays in response to a keystroke. Several forms
can call the same pop-up window. Shared pop-up windows are
generated once and linked to the forms that call them.

Be sure to specify all pop-ups that may be called by a screen. If an
ungenerated pop-up is invoked, results will be unpredictable.

Specifying gOOi form components

User’s Guide 135

Specify the following options in separate Form IDs:

Option Description
Menu Creates a menu interface with a special controller

(which ignores all other controllers). If a screen serves
as a menu, gOOi can generate the menu option in a
list box if the screen design meets certain
requirements. Select the menu type for your menu
screen only if the following conditions are met:
- The screen has an unprotected numeric field.
- Menu options are in the following format:
 first-option-name
 second-option-name
 [and so on]
Alternatively, you can define the menu screen as a
screen type rather than as a menu type.

Prompter MANTIS users: Creates a special interface for a
MANTIS help screen. The different pages of the
prompter display in a scrollable list. A Next button is
automatically provided to allow the user to open a
chained prompter.

c. From the File Name drop-down list, select the extract file that
contains the component you are currently specifying.

d. MANTIS users: Perform this step only if your MANTIS
application uses Dynamic CONVERSE to display your host
screen at a position other than the one at which it was designed.
Otherwise, proceed to step e.

Chapter 5 Generating gOOi forms

136 P39-5020-00

The Converse field on the Application Generator window allows
you to specify the row and column offset of a Dynamic
CONVERSE. The default values are row 1, column 1 (1@1).

For example, a host application uses two fields displayed
through:
CONVERSE MAP1 WAIT

CONVERSE MAP2 UPDATE (20,1)

Where:

 MAP1 = a screen designed at 1@1

 MAP2 = a footer line designed at 1@1, but
 dynamically CONVERSEd at 20@1

To generate a gOOi form that duplicates the positioning of this
mainframe display, define the gOOi form with two components:
a screen with CONVERSE values of 1@1 and a footer with
CONVERSE values of 20@1.

Specifying gOOi form components

User’s Guide 137

mailto:1@1

e. Click Add item to form or double-click the file name. (If you
make an error, select the extract file in the Form ID list and click
Delete.) Your component displays in the list:

In the preceding example, note that the listed extract files are the
components of the selected Form ID (Form 001). Once you have
specified all your interfaces, selecting different Form IDs yields
different extract file lists.

Chapter 5 Generating gOOi forms

138 P39-5020-00

10. Repeat steps 9b through 9e for each Form ID component. After you
have specified all the components for one Form ID, proceed to step
11.

 The following are two examples of gOOi form specifications. Form1
is composed of one header, one footer, two screens, plus two pop-up
windows that may display:

 Form 1 HEAD01.EXP header
 PART1.EXP screen
 PART2.EXP screen
 FOOT01.EXP footer
 LIST01.EXP pop-up
 ERROR01.EXP pop-up

 Form2 uses a different header and footer than Form1, but shares two
pop-up windows with Form1. Form2 also uses an additional pop-up:

 Form 2 HEAD02.EXP header
 CUSTOM.EXP screen
 FOOT02.EXP footer
 LIST01.EXP pop-up
 ERROR01.EXP pop-up
 LIST02.EXP pop-up

11. After you have specified all components for one Form ID, select the
next Form ID (with the �+� button) and repeat step 9. Proceed in this
manner until all screens for your host application have been
specified. Then proceed to step 12.

If you want to preview a form before generating the entire application,
you can select the Form ID in the list and click Preview. Preview is
handy for checking the effects of different font settings, or to see how
your template controls display. You must still generate your forms to
create a gOOi application.

Preview adds a temporary application to the ObjectStudio Work
Area; this application is discarded when you terminate ObjectStudio.
See �Viewing an ungenerated form using Preview� on page 146 for
more information.

Specifying gOOi form components

User’s Guide 139

12. After you have specified all components for all Form IDs in your host
application, read the following Note and make resolution
adjustments, if necessary.

The appearance of generated gOOi interfaces can be affected by
moving them from finer to coarser display resolutions. Before gOOi
application generation, set the resolution of your developer
workstation to the coarsest resolution at which it will ultimately be
displayed on any end-user workstation.

In other words, if your developer�s workstation has 1024 x 768
resolution, and you are going to deploy the gOOi application to an
end-user workstation with 800 x 600 resolution, set your developer�s
resolution to 800 x 600.

The font size must also be considered. If your target end-user
workstations use large fonts, ensure that your developer�s
workstation uses large fonts.

13. Ensure that the log file is enabled. The log file keeps a time-stamped
record of your gOOi application generation session. It records the
processing results of each phase of the generation process. If the
Generator detects a warning or error condition, it notes the condition,
but the Generator still continues. The log also records when a
generated .cls file already exists (the existing file is renamed to .old).

To verify that the log is enabled, select � Log file options from the
menu. The �Enable log file� check box should be selected.

Chapter 5 Generating gOOi forms

140 P39-5020-00

Generating gOOi application forms
After specifying all components for all Form IDs (see �Specifying gOOi
form components� on page 127), you are ready to generate the
application forms as follows:

1. On the Application Generator window, click Generate. The first
window to display allows you to generate only selected forms of the
application:

Generating gOOi application forms

User’s Guide 141

This feature is useful if you want to regenerate part of an application
that was previously generated, such as when a host screen changes.
By default, all forms in the application will be generated. If you want
to exclude forms, follow these steps:

a. Turn off the �Select All Forms� check box.

b. Click on each form you want to generate. The form will be
highlighted after you click it.

c. Click the OK button to continue generation.

2. The next window identifies the active profile and lists the forms that
are included in the application. This window also includes a check
box that can be selected to retain form customizations:

Chapter 5 Generating gOOi forms

142 P39-5020-00

Selection of the �Do not generate user interfaces� check box prevents
gOOi from generating a controller (visual object) for the host screen.
This preserves any previous customizations you may have made to
the form generated for the host screen. gOOi will generate a new
host screen object (non-visual object) that reflects all of the content
of the host screen being processed. This allows you to add new
content to a previously generated form from the newly generated
host object without losing any form customizations.

3. Check the gOOi application forms list to verify that the profile and all
forms are specified correctly. If the list is OK, click Start. The
following window displays:

 Use this window to exclude host fields from the generated gOOi
forms. If you do not want to exclude any host fields, click
Continue Generation.

Generating gOOi application forms

User’s Guide 143

 If you want to exclude host fields, follow these steps:

a. Select the form ID that contains the field(s) to be excluded.

b. Select the generated screen name for this form ID.

c. Select the generated field(s) to be excluded for this screen.

d. Select the >> button to move the field(s) into the Excluded fields
list.

 Repeat these steps as necessary, and then click
Continue Generation.

4. If an error occurs during generation, the following message box is
displayed:

When you press OK, the contents of the gOOi log file are displayed
in Notepad. The results of the most recent generation are at the end,
which you can quickly jump to via the Ctrl/End keys.

If generation completes successfully, the following window displays:

Chapter 5 Generating gOOi forms

144 P39-5020-00

 You would normally click Yes to update the loadable applications file.
If you choose No, you have to explicitly load your new classes the
next time you start gOOi.

5. When you respond to the preceding window, the Generate window
again displays. Click Close to return to the Application Generator
window. Click Exit; the following window displays:

 We highly recommend that you save your application layout
(definition). This is especially useful if you want to generate the same
application several times (for example, to see the impact of a
selected font).

 You can save an application definition by selecting File � Save
layout. Enter a valid file name. To avoid file overrides, use the
default extension of .LAY. After responding to this window, you
return to the gOOi Work Area.

The Application Generator automatically puts a new application into a
folder. If you return to the ObjectStudio Desktop without exiting
ObjectStudio first, you can open your application folder and your
forms are arranged in a scrollable format. The next time you restart
ObjectStudio, you have choices for loading and displaying your
forms.

If you load your application using Load application, your forms
appear as icons in the gOOi Work Area. If your application has
many forms, the Work Area will be cluttered. You can create a new
folder by selecting File � New � Folder. If you click mouse button 2
on the new folder and choose Load application into, you can load
your application from the picking list. Once again, your forms are in a
scrollable format. You also can put forms into a folder by clicking
and dragging the form icons onto the folder icon.

Generating gOOi application forms

User’s Guide 145

Viewing a gOOi form
If you have many gOOi forms to specify, you may want to view the
appearance of your first form before you specify all forms. These are
your options:

♦ (Recommended) You can view a gOOi form before it is generated by
using the Preview feature on the Application Generator window.

♦ You can view a generated gOOi form without a host connection (with
empty fields).

♦ You can view a generated gOOi form with a host connection (with
real field values).

Viewing an ungenerated form using Preview
When using the Application Generator to specify form components, you
can use Preview to see a particular form before generating the entire
application. At the Application Generator window, select the Form ID in
the list and click Preview.

Preview is convenient for checking the effect of different font settings, or
to see how your template controls display on the gOOi form. You must
still generate your forms to create a gOOi application. Preview adds a
temporary folder to the ObjectStudio Work Area, which is discarded when
you terminate ObjectStudio.

The class files for the forms that you preview are created in the
\gOOi\Preview folder under ObjectStudio. These files remain in this
folder along with a Preview.txt file until you delete them. You can delete
them via the Windows Explorer, or by using File � Objects� Tools �
Clear Preview Folder from the gOOi Workplace menu as follows:

Chapter 5 Generating gOOi forms

146 P39-5020-00

Viewing a generated gOOi form without a host connection
There are two methods for viewing a generated gOOi form without a host
connection (with empty fields) Viewing the generated form outside
ObjectStudio Designer and Viewing the generated form inside
ObjectStudio Designer.

Viewing the generated form outside ObjectStudio Designer
Generate the form as described in this chapter. The generated form
displays as an icon in the ObjectStudio Work Area. Double-click the icon
to display the form. This method is adequate for viewing the placement
of fields. What you see depends on what type of form it is. If the form is
dependent on run-time data (for example, prompter text), the body of the
form will be empty. If the form has many data fields, you can view their
placement.

Viewing the generated form inside ObjectStudio Designer.
Generate the form as described in this chapter. The generated form
displays as an icon in the ObjectStudio Work Area. Open the form in
ObjectStudio Designer. Click the form icon to select it, then right-click
the form icon and select Edit. The form displays in Edit mode. This
method is adequate for viewing the placement of fields. To ensure that
you are viewing all fields on the form, select FormItem � Select all.

To verify the appearance of the form at runtime, select �File � Test
interface� to view the form in Test mode. After viewing, select File �
Exit. To use ObjectStudio Designer to move fields and enhance the
interface, see �Basic customizations� on page 164. For information about
ObjectStudio Designer training for gOOi, contact your Cincom
representative.

Viewing a gOOi form

User’s Guide 147

Viewing a generated gOOi form with a host connection
To view a gOOi form with real values displaying in the fields, connect to a
host by clicking on the HostMonitor icon on the gOOi Workplace window.
Select your emulator and profile, and then click Start. The following
window displays:

When a session becomes active, the GOOIHostMonitor box is
minimized. Run your host application. If a gOOi form exists for the
active host screen, the gOOi form is displayed.

Chapter 5 Generating gOOi forms

148 P39-5020-00

6
Using integration wizards

Word Wizard tool
The Word Wizard tool provides an easy way of integrating a host
application with Microsoft Word for Windows. The wizard allows you to
pick the desired fields from a selected gOOi form for transfer to a Word
document and adds a button to the form that executes the data transfer
at run time. The code to perform the data transfer is generated by the
wizard.

From the gOOi Workplace window, double-click the Tools icon, then
double-click the Word Wizard icon. The gOOi To Word Wizard window
displays:

User’s Guide 149

To use the Word Wizard tool, perform the following steps:

1. Choose the gOOi form containing the data that you want to insert in a
Word document, then select the target Word document:

2. Click Next >>.

In the Word document, fields that are to receive data from the gOOi
form must be preceded by an identifier character (@ by default).

Chapter 6 Using integration wizards

150 P39-5020-00

3. Match the fields on the gOOi form with fields on the Word document
by selecting the desired controller field and then selecting the
corresponding Word field:

4. Click <-Link-> to establish the connection between these fields. The
following window displays:

 gOOi displays the relationship by appending an arrow and the name
of the Word field after the name of the controller field. Linked fields
display in italics.

5. Repeat steps 3 and 4 until all gOOi form/Word document field
connections have been established, and then click Next.

Word Wizard tool

User’s Guide 151

6. Name the Smalltalk method to be generated within the gOOi form. (It
is a good idea to include the name of the Word document within the
method name. This approach makes it easy to distinguish between
methods if your gOOi form is integrated with multiple Word
documents.) The method name is shown in the following window:

 For example, if the name of your Word document is Past Due Letter,

you might specify a method name of linkPastDueLetterDoc.

7. Click Finish. The following window displays:

8. Click Yes to create a button on the gOOi form. When the user

selects this button at run time, the gOOi form to Word document data
transfer will occur through the Smalltalk method.

After creating a button with the wizard, ObjectStudio Designer
displays the gOOi form so you can verify that the button is positioned
where you want it.

Chapter 6 Using integration wizards

152 P39-5020-00

Excel Wizard tool
The Excel Wizard tool provides an easy way of integrating a host
application with Microsoft Excel for Windows. The wizard allows you to
pick the desired fields from a selected gOOi form for transfer to the
desired location in an Excel spreadsheet. The wizard then adds a button
to the form that executes the data transfer at run time and generates the
code to perform the data transfer.

From the gOOi Workplace window, double-click the Tools icon, then
double-click the Excel Wizard icon. The gOOi To Excel Wizard window
displays:

Excel Wizard tool

User’s Guide 153

To use the Excel Wizard tool, perform the following steps:

1. Select the gOOi form containing the data you want to transfer to an
Excel spreadsheet, then select the target Excel spreadsheet. You
can link gOOi form fields as a group to a sheet within the
spreadsheet, to individual cells, or to individual fields. If you link to
individual fields, the target fields in the Excel spreadsheet must be
preceded by an identifier character (@ by default). To enter the @
character in a cell, enclose the @ character and the field name within
quotes, such as �@Address�. A sample window follows:

2. Click Next, then use one of the following methods to connect gOOi
form fields to Excel spreadsheet cells:

- Select a range of gOOi form fields and a sheet within the Excel
spreadsheet, then click Link.

- Select a gOOi form field and a spreadsheet cell, then click Link.

- Select a gOOi form field and a named Excel field, then click Link.

In all three cases, gOOi displays the relationship by appending an
arrow and the name of the Excel cell or field after the name of the
controller field.

Chapter 6 Using integration wizards

154 P39-5020-00

 The following example shows the controller fields prior to linking:

 After linking, gOOi appends an arrow and the name of the Excel field
after the name of the controller field. Linked fields display in italics as
follows:

3. Establish connections for controller fields and Excel cells or fields as
appropriate, and then click Next. The gOOi to Excel Wizard-Method
window displays.

Excel Wizard tool

User’s Guide 155

4. Name the Smalltalk method to be generated within the gOOi form. If
your gOOi form is integrated with multiple Excel spreadsheets,
including the name of the Excel spreadsheet within the method name
helps to distinguish among methods.

You can also specify an Excel macro name that will be executed
within Excel after the data has been transferred.

 For example, if the Excel spreadsheet name is Credit Limit, you
might specify a method name of linkCreditLimitXls as in the following
window:

Chapter 6 Using integration wizards

156 P39-5020-00

5. Click Finish. The following message box displays:

6. Click Yes to create a button on the gOOi form. Selecting this button
at run time invokes the Smalltalk method for transferring data from
gOOi to Excel.

When you create a button, ObjectStudio Designer gets focus after
completion of the wizard. You can then see if the button is
positioned where you want it on the gOOi form.

Excel Wizard tool

User’s Guide 157

Chapter 6 Using integration wizards

158 P39-5020-00

7
Customizing gOOi forms

Overview of customization
Generated gOOi forms can be modified and extended by using
ObjectStudio�s Designer tool. This section discusses how to perform the
following basic customizations:

♦ Moving fields

♦ Changing the size and shape of fields

♦ Changing a field�s color, font, and/or justification

♦ Changing the field�s presentation type

♦ Grouping fields graphically

♦ Changing the form title and/or background

When you are customizing your gOOi screens, be sure to exit
ObjectStudio Designer before you test them. If you do not, unexpected
results will occur, even if your customization was done correctly.

Tabbing (item traversal sequence) between your gOOi form fields will by
default follow the sequence of the corresponding host emulator screen. If
you customize the gOOi form to use a different field ordering, you can
also change the item traversal sequence by selecting Form � Item
Traversal from ObjectStudio Designer.

User’s Guide 159

The customizations explained in this chapter require no knowledge of
ObjectStudio or Smalltalk, but such knowledge would increase the
possibilities for gOOi extensions. To learn more about extending gOOi
applications, refer to the following ObjectStudio manuals:

♦ ObjectStudio Smalltalk User’s Guide, P40-3202, gives conceptual
and procedural information about the Smalltalk language. It contains
exercises that show you how to use Smalltalk.

♦ ObjectStudio User's Guide, P40-3201, describes how to use
Smalltalk and ObjectStudio tools to build applications.

♦ ObjectStudio User Interface Guide, P40-3205, describes how to use
ObjectStudio Designer to build interfaces for applications.

For training on using ObjectStudio to enhance gOOi applications, contact
your Cincom representative.

Chapter 7 Customizing gOOi forms

160 P39-5020-00

Bringing a gOOi form into ObjectStudio Designer
To bring a gOOi form into ObjectStudio Designer, perform the following
steps:

1. Load the application you want to customize. If you updated the
loadable applications file when you generated your application (see
�Editing your loadable application� on page 102), your application
displays in the application list when you start gOOi (see �Loading
gOOi� on page 42). If you did not update the loadable applications
file, you must explicitly load your new forms. When your application
is loaded, each form displays as an icon in the ObjectStudio Work
Area.

Bringing a gOOi form into ObjectStudio Designer

User’s Guide 161

2. With mouse button 2, click the gOOi form icon you want to
customize. Select Edit from the menu. The gOOi form displays in
ObjectStudio Designer with empty fields as shown in the following
example form:

Chapter 7 Customizing gOOi forms

162 P39-5020-00

3. The ObjectStudio Designer toolbar is independent of the gOOi form
you intend to customize. The toolbar may be behind the form
window. If the toolbar is hidden, you can use Alt/Tab to move to it, or
click on the Designer button on the Windows Taskbar.

The display size of a gOOi form depends on the font size of the PC
where the form is displayed. If you are working on a PC where the
display size is set to small fonts, please keep in mind that the form
may appear significantly larger on a PC where the display is large
fonts. This can mean that the form will need scroll bars for all the
data to be viewed on a large font PC.

A sample toolbar is illustrated in the following window:

4. Perform customizing tasks (see �Basic customizations� on
page 164).

Bringing a gOOi form into ObjectStudio Designer

User’s Guide 163

Basic customizations

Moving fields
After loading your gOOi application and moving a gOOi form into
ObjectStudio Designer, you can move form fields to new locations one at
a time, or in groups.

Moving fields one at a time
Perform the following steps to move a single field:

1. Select the field (by clicking over it).

2. Drag the field to a new location. You can activate Grid and Snap
capability under the Form menu.

3. When you are satisfied with your changes, select File � Save.

Moving multiple fields
You can move multiple fields together by selecting them as a group. This
allows you to align fields.

To move multiple fields together, perform the following steps:

1. Imagine a box that would enclose the fields you want to select as a
group. Move your mouse pointer to the upper left of this imaginary
box.

2. Click and drag (hold down mouse button 1) toward the lower right
until all target fields are selected. During this process the selected
fields will be outlined with a dashed box. This technique is referred to
as lassoing.

An alternative method to steps 1 and 2 is to hold down CTRL and
click each field.

3. Click and drag your selected grouping to the desired location. You
can activate Grid and Snap capability under the Form menu.

Chapter 7 Customizing gOOi forms

164 P39-5020-00

Notice that one of your selected fields has a thicker border.
ObjectStudio Designer designates this bolded field as the selection
head. Some ObjectStudio Designer alignment tools adjust the
alignment of multiple fields relative to the selection head. For
instance, all selected fields can be right aligned with the right side of
the selection head. You can designate a different selection head by
clicking one of the other selected fields (the last item clicked is the
selection head).

4. You can adjust field alignment using the blue and red alignment tool
buttons on the ObjectStudio Designer toolbar. If you cannot see the
tool buttons, activate the toolbar.

To see alignment toolbar button descriptions, select the following
topics: Help � Help index � Creating User Interfaces � The
Designer Toolbars � The Designer Alignment Toolbar.

Basic customizations

User’s Guide 165

5. When you are satisfied with your changes, select File � Save. The
following window displays fields moved to new locations:

Chapter 7 Customizing gOOi forms

166 P39-5020-00

Changing the size and shape of fields
After loading your gOOi application and moving a gOOi form into
ObjectStudio Designer, you can change the size and shape of form
fields. You can modify individual fields manually, or you can instruct
ObjectStudio Designer to automatically resize selected groups of fields.

Manually changing a field’s size and shape
Perform the following steps to change the size and shape of a field:

1. Select the field. Selection handles (�) display along the field�s
perimeter.

2. Change the size and shape of the field by clicking and dragging the
selection handles to resize it. You can activate Grid and Snap
capability under the Form menu.

3. When you are satisfied with your changes, select File � Save.

Automatically resizing selected fields
ObjectStudio Designer provides tools for automatically resizing a selected
group of fields. To automatically resize fields, perform the following
steps:

1. Imagine a box around the fields you want to select as a group. Move
your mouse arrow to the upper left corner of this imaginary box.

2. Click and drag toward the lower right until all target fields are
selected.

An alternative method to steps 1 and 2 is to hold down CTRL and
click each field with the mouse.

3. Resize the selected fields using the blue and red resizing tool buttons
on the ObjectStudio Designer toolbar.

Basic customizations

User’s Guide 167

Notice that one of your selected fields has a thicker border.
ObjectStudio Designer designates this bolded field as the selection
head. The ObjectStudio Designer resizing tools resize fields to one
or more specifications of the selection head. For instance, all
selected fields can be resized to the width and height of the selection
head. You can designate a different selection head by clicking on
one of the other selected fields.

To see resizing toolbar button descriptions, select the following
topics: Help � Help index � Creating User Interfaces � The
Designer Toolbars � The Designer Alignment Toolbar � Resize.

4. When you are satisfied with your changes, select File � Save.

The following window displays data fields lengthened and widened:

Chapter 7 Customizing gOOi forms

168 P39-5020-00

Changing a field’s color, font, and/or justification
After loading your gOOi application and opening a gOOi form in
ObjectStudio Designer, you can change a field�s color and/or font as
follows:

1. Double-click the field you want to change. A Form Entry Field
Options window displays:

Basic customizations

User’s Guide 169

2. Click Format. The following window displays:

3. Select format options. The effects of your choices display in the
Example area.

For information about maintaining host application field attributes
(one of which is color), see �Specifying host field attribute matching�
on page 59.

4. When you are satisfied with your format selections, click OK. You
return to the Form Entry Field Options window.

5. Click Cancel or OK. You return to your gOOi form.

Chapter 7 Customizing gOOi forms

170 P39-5020-00

6. When you are satisfied with your changes, select File � Save. The
following window displays font and font size changes in static text
fields:

Basic customizations

User’s Guide 171

Changing a field’s presentation type
After loading your gOOi application and opening a gOOi form in
ObjectStudio Designer, you can change a field�s type. The example in
this section shows how to change a blank data entry field into a drop-
down list box, a set of radio buttons, or a check box.

In each case, the change provides choices for selecting values, reducing
the chance of error that exists with an empty field. In effect, you can
enhance an application independent of the host application.

Perform the following steps to change the presentation type for a field:

1. Select the field.

Note the exact field name for later use. To verify the field name,
double-click the field; the name displays in the Form Entry Field
Options window. (You can also click the field name; the name
displays on the status line, if the status line is activated.) After noting
the name (case-sensitive), click Cancel to return to the gOOi form.

2. Select Controller � Subject. The selected field is listed after Item: at
the bottom of the Subject window. The Mapped To: entry consists of
the object name, a period, and the selected field name (for example,
CustomerHostObject.efName). Note the mapped name for later
reference.

3. Delete the selected field by either pressing Ctrl+D or selecting
FormItem � Delete Item(s). You are prompted to confirm the
deletion.

Chapter 7 Customizing gOOi forms

172 P39-5020-00

4. Create a new item either by pressing Ctrl+N or selecting FormItem �
New Item. The following New Item window displays showing icons
for available items:

Basic customizations

User’s Guide 173

When you click an icon, the type description�drop-down list box,
radio button, or check box�displays near the top of the screen. If
you click in the white space between the icons with mouse button 2,
you receive an option box. If you select List, the icons are presented
alphabetically in a scrollable format with their associated
descriptions.

5. Click the field type you want. For this example, select Drop-Down
List Box or Radio Button.

6. In the Name field, enter the field name you noted in step 1.

Chapter 7 Customizing gOOi forms

174 P39-5020-00

7. Click OK. For this example, the drop-down list box now displays on
your gOOi form.

8. Double-click the drop-down list box field. The Form Drop-down List
Box Options window or Form Radio Buttons Options displays. Both
windows have the same content, but different titles.

As shown in the following example, enter the options you want
displayed in the list box. Enter each option in the text box below the
Labels/Values box and click Add. The option displays in the
Labels/Values list:

To retrieve values from a database table instead of hard coding
them, you must use an ObjectStudio-compatible database. Click
Link and select Table; the database table name and field that has the
credit rating values displays. Once the link is established, the values
from the field display on the gOOi form at run time.

Basic customizations

User’s Guide 175

9. To specify a distinction between the option name displayed in the list
box and the value that is actually transmitted to the host application,
change the option Label. For example, you could specify a Label of
AAACredit for Value A1. To do this, double-click the entry in the
Labels column. You are prompted for a new name.

10. New items receive default format settings (they are unaffected by
format settings you have specified for existing fields). If you want the
formatting of a new item to be consistent with the rest of the fields,
you must click Format and explicitly set the values.

11. After clicking OK on the Form Options window for the form item type
you are using, make sure that the new form item is selected. Select
Controller � Subject. Verify that the Attribute radio button is selected
with the name of the selected field. Click Map. The Mapped To:
information from step 2 is restored. Click Close.

12. If you choose Drop-down List Box or Radio Buttons as your new form
item, no Smalltalk coding additions are necessary; you can skip this
step. For a check box, select Tools � Class Browser from the
ObjectStudio Work Area. Under Classes, go to the class name that
consists of your gOOi form name suffixed by Controller. Under
Methods, we want to add a set method using the name of the check
box that you added. The purpose of a set method is to set the value
of an object (for example, a check box) based on data passed to the
set method.

The name of a set method is the name of the object with a colon
appended. For example, each host object has a set method
corresponding to the entry fields on the host screen. In the case of
the credit limit field, (nfCreditLimit, where nf indicates a numeric
field), the set method of the host object is as follows:
nfCreditLimit: aValue

nfCreditLimit := aValue.

For this example, suppose you are changing the gOOi form to
replace the credit limit field with a check box that is selected only if
the customer credit limit exceeds 10000. To accomplish this, leave
the set method of the host object intact, and add a simple Smalltalk
set method to the controller as follows:

nfCreditLimit: aValue

(aValue asNumber > 10000) ifTrue: [

nfCreditLimit display: true.

] ifFalse: [

nfCreditLimit display: false.

].

Chapter 7 Customizing gOOi forms

176 P39-5020-00

The preceding code assumes that the original name was assigned to
the check box in step 6 and this check box was linked with the
corresponding host object variable in step 11. It is possible with
gOOi to use a different name for the replacement form item. In this
example, �cbCreditLimit� (where cb indicates a check box) could
have been assigned as the check box name in step 6 and
cbCreditLimit linked to nfCreditLimit of the host object in step 11.
The set method would then be:

cbCreditLimit: aValue

(aValue asNumber > 10000) ifTrue: [

cbCreditLimit display: true.

] ifFalse: [

cbCreditLimit display: false.

].

13. To test the new presentation type for the modified field, select File �
Test interface. Your gOOi form is placed in test mode. For this
example, clicking on the drop-down list box field provides the valid
values you specified.

14. To leave test mode, select File � Edit interface on the ObjectStudio
Designer window (behind the test interface). You return to the
ObjectStudio Designer edit mode.

Basic customizations

User’s Guide 177

15. When you are satisfied with your changes, select File � Save. The
following window displays the addition of a drop-down list box:

Chapter 7 Customizing gOOi forms

178 P39-5020-00

The following window shows the replacement of an entry field with a
check box:

Basic customizations

User’s Guide 179

Grouping fields graphically
After loading your gOOi application and moving a gOOi form into
ObjectStudio Designer, you can graphically group component fields in a
topic box (for example, all address fields in an Address box). To
graphically group fields, perform the following steps:

1. Imagine a box that would enclose the fields you want to select as a
group. Move your mouse arrow to the upper left corner of this
imaginary box.

2. Click and drag toward the lower right until all target fields are
selected.

An alternative method to steps 1 and 2 is to hold down CTRL and
click each field.

Chapter 7 Customizing gOOi forms

180 P39-5020-00

3. Create a new item by either pressing Ctrl+N or selecting FormItem �
New Item. The following New Item window displays icons for
available new items:

Basic customizations

User’s Guide 181

When you click an icon, the type description displays near the top of
the window. If you click mouse button 2 in the white space between
the icons and select List, the icons are presented alphabetically in a
scrollable format with their associated descriptions.

4. Click the Topic Box icon.

5. In the Name field at the top of the window, enter the topic name you
want. For example, address components could be grouped under
�Address.�

6. When you click OK, a topic box displays with your specified topic
name at the top.

Chapter 7 Customizing gOOi forms

182 P39-5020-00

7. Double-click the topic box to receive the Form Topic Box Options
window.

8. Click Format. The String Display Format window displays.

9. Make your format selections. You can see the effects of your
choices in the Example window.

10. When you are satisfied with your format selections, click OK. The
Form Entry Field Options window displays.

11. Click Cancel. You return to your gOOi form.

12. Change the size and shape of the topic box to accommodate the
component fields you want to group inside the box. To do this, click
and hold the appropriate �handle� along the box�s perimeter with
mouse button 2. Drag the box to the size and shape you want. This
requires a series of adjustments as you decide how to compose
fields inside the box.

Basic customizations

User’s Guide 183

13. Move each field you want to group into the topic box. To do this,
select each field and move it by clicking and dragging it to the new
location. (For details and options for moving fields, see �Moving
fields� on page 164.) The following window displays the example
gOOi form reworked into two field groupings (Client and Credit):

14. When you are satisfied with your changes, select File � Save.

Chapter 7 Customizing gOOi forms

184 P39-5020-00

Changing the form title and/or background
The default form title is the form name, and the form name is usually the
screen ID. You may want to change the form title to give the user a
better description of the window contents. You may also want to change
the form background to a different color, or to a bitmap. To change either
of these items, perform the following steps:

1. From the Designer menu, select Form � Change Form. The
following window is displayed:

2. Overtype the �Form Title� to change the title.

The form may include a static text item that serves as a host screen
description. This item becomes redundant after changing the title. If
you want to remove it, just click the item and press the Delete key.
ObjectStudio will prompt you to confirm the item deletion.

Basic customizations

User’s Guide 185

3. To modify the background, click the Background button, and the
following window displays:

Chapter 7 Customizing gOOi forms

186 P39-5020-00

You can choose a physical color such as Red, or a logical color, such as
DialogBackgroundColor (which may be different across PCs). You can
create a custom color by switching to RGB mode, which presents the
following window:

Basic customizations

User’s Guide 187

�or you can select Bitmap as the Background Type and designate a
bitmap file in the following window:

4. When you are satisfied with your changes, click OK, then select
File � Save.

Chapter 7 Customizing gOOi forms

188 P39-5020-00

The following window shows an example of a gOOi form after the title
and background were changed:

Basic customizations

User’s Guide 189

Additional customizations
There are many other possibilities for form customization beyond those
discussed in the previous �Basic customizations� section. This section
gives detailed instructions for some other customizations that you may
want to implement:

Using check boxes for Y/N fields
Another common use of a check box is to represent a single character
entry field on the host that accepts only Y (yes) or N (no). The same
steps listed under "Changing a field�s presentation type� on page 172
can be followed to implement a check box for this purpose, except for the
Smalltalk code shown in step 12. Two simple methods need to be added
to the Controller:

♦ A get method to translate the check box setting to the Y or N
recognized by the host. The name of a get method is the name of
the object, for example cbWantsMail

♦ A set method to translate the Y/N value from the host to the
corresponding checked/unchecked state for the check box. The
name of a set method is the name of the object with a colon
appended, for example cbWantsMail:

gOOi includes two methods that are inherited by forms (from
GOOIGenericController) to allow easy coding of these get and set
methods. For example, a host display has multiple fields of customer
data. One of these fields is set to Y or N to indicate if the customer has
requested to be included on a newsletter mailing list. After you generate
the gOOi form (CustDataController and CustDataHostObject), you
replace this entry field (name of efWantsMail) with a check box (name of
cbWantsMail). This check box becomes functional with the following get
method:
cbWantsMail

^ self getCheckBoxYorNfor: (cItemDict at: #cbWantsMail).

and set method:
cbWantsMail: aValue

self setCheckBoxYorNfor: (cItemDict at: #cbWantsMail) with:
aValue.

Chapter 7 Customizing gOOi forms

190 P39-5020-00

Added to CustDataController. cItemDict in these two methods is a
dictionary of controller items that is included in the Controller part of every
gOOi form. This dictionary is keyed by controller item name, so
(cItemDict at: #cbWantsMail) returns the controller item for the check
box. The get method must have the same name as the check box, and
the set method must be named the same as the check box name with a
colon appended. aValue in the set method is a string of �Y� or �N� from
the host entry field. getCheckBoxYorNfor: and setCheckBoxYorNfor: are
methods inherited from GOOIGenericController.

Using spin buttons for numeric fields
You may want to use a spin button to represent a numeric field that has a
small range of valid values. For example, a host display with information
about children includes a field to display a child's age from 0 to 21. After
the gOOi form (ChildDataController and ChildDataHostObject) is
generated, you replace this entry field (efAge) with a spin button (sbAge).
For this example, to show an advanced technique, let�s make the ages in
descending sequence.

When defining the spin button in the ObjectStudio Designer, select the
Only Numbers option. Also, enter the valid numbers from largest to
smallest (21, 20, etc.). This spin button will become functional after you
add to ChildDataController the following get method:
sbAge

^ (sbAge getValueAt: (sbAge getSelection)) asString.

and set method:

sbAge: aValue

sbAge setSelectionTo: (22 - (aValue trimBlanks asInteger)).

are added to ChildDataController. In the get method, getSelection
returns an integer index of the current value displayed in the spin button.
This integer is then passed to the getValueAt: method, which returns the
value currently displayed at this index. Finally, the asString method
converts the value to a string object. For example, if the spin button
currently displays 21 (the first entry in the list), the index returned from
getSelection is 1 and the value returned by getValueAt: at index 1 is 21.
The asString method produces a string of �21�.

In the set method, the spin button must be positioned at the index
associated with aValue, which is the age on the host display. If aValue is
�21�, this string is converted to an integer and subtracted from 22. The
spin button is set to the resulting index of 1, and displays 21.

Additional customizations

User’s Guide 191

Putting data in the status line
Every gOOi form is generated with a status line at the bottom. By default,
this status line displays the contents of row 23 from the host screen. You
may want the status line to display data from a different host screen
location, or to display multiple data items.

For example, a host screen has a message line at row 22, and date and
time fields on row 1. You want these 3 items to appear on the status line
and not on the gOOi form. In the ObjectStudio Designer, select these
items by clicking on one of the 3, then clicking on the other 2 while
holding down the Ctrl key. Once all 3 are selected, press the Delete key
to remove them from the form.

To create a multiple section status line, select Tools � Status Line from
the Designer menu and the following window is displayed:

Chapter 7 Customizing gOOi forms

192 P39-5020-00

Click the Edit button to get the Status Line Options window:

Additional customizations

User’s Guide 193

For this example, the width will be increased to a larger value to
accommodate the message field. In addition, the Display Effect will be
changed to Sunken, and the Stretch style turned off. Click on
Replace>>, and the window appears as follows:

The Stretch style is typically used for the last section of the status line so
that the segment extends to the end of line. The width value may require
experimentation to achieve the desired size for each section.

Chapter 7 Customizing gOOi forms

194 P39-5020-00

Set the width, Display Effect, and Style for a section to display date, then
click Add. Repeat this process to create a section to display time, using
the Stretch style since it is the final section. The following window shows
a status line definition with three sections:

Additional customizations

User’s Guide 195

Click OK to save the status line configuration. The status line on the
form is displayed with 3 sections as in the below example:

A small amount of Smalltalk code is needed to put the three data items
into the status line sections at runtime. This code is placed into
refreshFields, a method in each controller that is executed each time the
gOOi form is displayed. Go to the Class Browser and select the
controller for the gOOi form to be updated (e.g. CLSC1Controller).
Select the refreshFields method, which appears as follows:

refreshFields

super refreshFields.

Chapter 7 Customizing gOOi forms

196 P39-5020-00

By adding four lines of code to this method, message, date, and time will
display in the three status line sections:

refreshFields

super refreshFields.

slCLSC1 at: 1 put: (self subject efMessage).

slCLSC1 at: 2 put: (self subject efDate).

slCLSC1 at: 3 put: (self subject efTime).

slCLSC1 formItem update refresh.

The name of the status line item is the name of the controller prefixed
with �sl� (slCLSC1 in this example). The first three of these additional four
lines of code execute at: put: methods to retrieve field data from the host
object (CLSC1HostObject) and put this data into the target status line
sections. The final line of code updates and refreshes the status line
display.

Using property pages
If the host display is divided into sections, you may want to group the
form items of each section of the generated gOOi form into a property
page. To work with property pages, it is important to understand that the
pages are contained within a property sheet. The following example
implements two property pages on a generated gOOi form named
Customer:

1. In the ObjectStudio Work Area, click mouse button 2 on the gOOi
form, then select Edit to bring up this form in the Designer.

2. From the Designer menu, select Form � New property page. This
brings up a prompt for the property page name. For this example,
the property page will contain address data, so you assign it a title of
�Address Information�. The new property page now appears on your
window.

3. Resize the original form so that you can see both this form and the
Address Information property page, making sure that Address
Information is outside the window borders of the original form.

4. Use lasso or Ctrl/click to select multiple form items to move to
Address Information. Drag and drop the selected items onto Address
Information.

5. From the Designer menu, again select Form � New property page.
For this example, suppose you assign a title of �Credit Information� to
this second property page.

Additional customizations

User’s Guide 197

6. Repeat the process described in step 4 to move the relevant form
items to Credit Information.

7. From the Designer menu, select Form � Property sheet, and the
Property Sheets dialog displays. Do the following:

a. Click the New button.

b. Enter a name for the property sheet (for example, �Customer
Data�) and click OK.

c. Click the Edit button. The Property Sheet Options dialog
displays.

d. Turn off the Modal check box and select the Modeless Buttons
check box.

e. Add the two pages listed in the Available Pages list box to the
Page Definition list box using the Add>> button.

f. Click OK, and the two property pages have been associated with
the Customer property sheet.

8. Select File � Test interface from the Designer menu to see how the
revised gOOi form looks at this point. The property pages are not
displayed; you only see the original gOOi form, which is now empty
because all the form items were moved to the property pages. The
next step involves adding code that displays these property pages
and hides the empty original form.

9. To add code that displays these property pages and hides the empty
original form:

a. From the Designer menu, select Controller � Events, and the
Event Editor dialog displays.

b. Under the Sender Object list box, select Customer (form), the
original form object generated by gOOi.

c. Under the Event names list box, select activated.

d. Under the Specify event receiver list box, select Customer, the
controller object for this gOOi form.

Chapter 7 Customizing gOOi forms

198 P39-5020-00

e. A new method is needed for this event, so click the Method
button and the Method Editor dialog displays for the
formCustomerActivated method. Add the following method code:

| propertySheet |

propertySheet := (formDict at: #'Customer Data').

propertySheet isOpen ifTrue: [

propertySheet activate.

] ifFalse: [

propertySheet open.

].

self mainForm isVisible ifTrue: [

self mainForm hide.

].

 and click the Save button to exit the Method Editor.

f. Click the <<Add<< button in the Event Editor to hook the
activated event to this new formCustomerActivated method.

g. Click the OK button to exit the Event Editor.

The first part of this method checks if the Customer Data property
sheet is already open. If it is, the activate method ensures that the
active property page is displayed. Otherwise, the property sheet is
opened. Finally, the end of the method makes sure that the empty
original form is not displayed.

All that remains is to implement the Cancel, Apply, and OK buttons
that are automatically provided with every property sheet. Each
button has a corresponding host behavior in this example:

- The Cancel button is equivalent to a PF3 key (exit without any
change).

- The Apply button is the same as a PF5 key (update but don't
exit).

- The OK button is the same as a PF5 key followed by a PF3 key
(update and exit).

A simple method is needed to translate the clicked event for each
button into the appropriate key(s).

Additional customizations

User’s Guide 199

10. To implement the Cancel button:

a. Select Controller � Events from the Designer menu, and the
Event Editor dialog displays.

b. Under the Sender Object list box, select Customer Data(form),
the property sheet object.

c. Under the Event names list box, select onCancel.

d. Under the Specify event receiver list box, select Customer, the
controller object for this gOOi form.

e. A new method is needed for this event, so click the Method
button and the Method Editor dialog displays for the
formCustomeronCancel method. Enter the following method
code:

self PF3KeyPressed.

 and click the Save button to exit the Method Editor.

f. Click the <<Add<< button in the Event Editor to hook the
onCancel event to this new formCustomeronCancel method. Do
not yet exit from the Event Editor. The PF3KeyPressed method
is inherited from the GOOIGenericController class.

11. Customer Data(form) is still selected as the Sender object. To
implement the Apply button:

a. Select onApply as the Event name. Customer is still selected as
the event receiver.

b. A new method is also needed for this event, so click the Method
button and the Method Editor dialog displays for the
formCustomeronApply method. Enter the following method
code:

self PF5KeyPressed.

 and click the Save button to exit the Method Editor.

c. Click the <<Add<< button in the Event Editor to hook the
onCancel event to this new formCustomeronApply method. Do
not yet exit from the Event Editor. The PF5KeyPressed method
is inherited from the GOOIGenericController class.

Chapter 7 Customizing gOOi forms

200 P39-5020-00

12. Customer Data(form) is still selected as the Sender object. To
implement the OK button:

a. Select onOK as the Event name. Customer is still selected as
the event receiver.

b. A new method is also needed for this event, so click the Method
button and the Method Editor dialog displays for the
formCustomeronOK method. Enter the following method code:

GOOIHostMonitor sleep.

self PF5KeyPressed.

self PF3KeyPressed.

GOOIHostMonitor wakeUp.

 and click the Save button to exit the Method Editor.

c. Click the <<Add<< button in the Event Editor to hook the onOK
event to this new formCustomeronOK method. This method
uses the sleep and wakeup methods of host navigation to allow
multiple host interactions to process without redisplay of this
Customer gOOi form. Do not yet exit from the Event Editor.

13. The Apply button is initially disabled. Two methods are needed (one
for each property page) to activate this button when data is entered
into either property page. Perform the following steps to enable the
Apply button:

a. Select one of the entry fields on the Address Information property
page as the Sender object.

b. Select wmCharPressed: as the Event name. Customer is still
selected as the event receiver.

c. A new method is needed, so click the Method button and the
Method Editor dialog displays for the
formCustomerwmCharPressed: method. Change the method
name as follows:

activateAddressApplyForWmCharPressed: arg

 then add the following method code:
(formDict at: #'Address Information') setModified: true.

Additional customizations

User’s Guide 201

d. Click the Save button to exit the Method Editor. This code
enables the Apply button for the Address Information property
page. Click the Method button again and change the method
name as follows:

activateCreditApplyForWmCharPressed: arg

 then add the following method code:
(formDict at: #Credit Information') setModified: true.

e. Click the Save button to exit the Method Editor. This code
enables the Apply button for the Credit Information property
page.

14. Now, every entry field must have its wmCharPressed: event hooked
to either of these two methods, depending upon on which property
page it was placed. For example, efCity is an entry field on the
Address Information property page, and efCreditLimit is an entry field
on the Credit Information property page. Perform the following steps:

a. Select efCity as the Sender object, wmCharPressed: as the
event name, Customer as the receiver, and
activateAddressApplyForWmCharPressed: arg as the message.

b. Click the <<Add<< button.

c. Select a different entry field on the Address Information property
page and click <<Add<< until every entry field assigned to the
Address Information property page has the wmCharPressed:
event hooked.

d. Select efCreditLimit as the Sender object, wmCharPressed: as
the event name, Customer as the receiver, and
activateCreditApplyForWmCharPressed: arg as the message.

e. Click the <<Add<< button. Select a different entry field on the
Credit Information property page and click <<Add<< until every
entry field assigned to the Credit Information property page has
the wmCharPressed: event hooked.

f. Click the OK button to exit from the Event Editor.

g. Save this form and exit from the Designer.

Chapter 7 Customizing gOOi forms

202 P39-5020-00

Example of an event-driven customization
The button in this example allows the user to select some fields with the
mouse and automatically paste the selected field values into an Excel
spreadsheet. The following examples are described:

♦ The first version shows how to copy a Cincom-provided Smalltalk
method, and how you can easily apply existing methods to gOOi
forms.

♦ The second version shows how to create the same button if you
create the Smalltalk method yourself. This version illustrates how a
little knowledge of Smalltalk can vastly widen the possibilities for
gOOi extensions.

These examples are provided to show the steps necessary to complete
the task, and to show what can be done with a small amount of Smalltalk
code. The end result is testable only if it is applied to the appropriate
gOOi form and an English language version of Excel is in the path coded
into the method (\msoffice\excel\excel.exe).

There are several important differences between the following examples
and the Excel Wizard. The Excel Wizard automatically generates the
Smalltalk code needed for integration. In addition, the wizard uses OLE
for the data transfer, whereas this example uses DDE.

Creating an event-driven button with an existing Smalltalk
method

To add an event-driven Excel button using an existing Smalltalk method,
perform the following steps (after loading your gOOi application and
moving the appropriate form into ObjectStudio Designer):

1. Create a new button called pbExcel. To do this, either press Ctrl+N
or select Formitem � New Item. The New Item window displays,
showing icons for available new items. Click the Button icon.

2. Enter pbExcel in the Name field and click OK. You return to your
gOOi form, which displays your new pbExcel button.

Additional customizations

User’s Guide 203

3. Double-click the pbExcel button. The following window displays:

4. In the Text field, delete the pb from pbExcel. The Text field
represents the external button name. (The Name field is the internal
name and must remain pbExcel.)

Chapter 7 Customizing gOOi forms

204 P39-5020-00

5. Click Methods. The following window displays:

6. Select the Inherited Methods check box at the lower-left of the
window. This lists all the methods inherited by the gOOi class (form)
that you are customizing.

7. Select the Cincom-provided pbExcelClicked method from the
Available Methods list.

8. Click >>Copy>>. The pbExcelClicked method displays in the
Assigned Methods box to the right.

9. Click OK. You return to the Form Button Options window.

10. Click OK. You return to your gOOi form.

11. Select File � Save.

12. Select File � Exit.

Additional customizations

User’s Guide 205

This sample Excel button is testable only if it is applied to the appropriate
gOOi form, and an English language version of Excel is in the path coded
in the method (\msoffice\excel\excel.exe).

To use the button, you need to make a host connection and run the host
application. At the appropriate window, click Excel. Select several data
fields by lassoing them with the mouse. When you release the mouse
button, the field values are inserted into Excel.

Creating an event-driven button with Smalltalk
To create your own method for the example Excel button, perform the
following steps (after loading your gOOi application and moving the
appropriate form into ObjectStudio Designer):

1. Select Tools � Variables. The following window displays the
variables in your current gOOi class (form):

2. Click Add. You are prompted to provide a new instance variable
name. Enter the following:
dde

This variable holds the DDE conversation.

3. Click OK.

4. On the Instance Variables window, click Close.

Chapter 7 Customizing gOOi forms

206 P39-5020-00

5. Select Tools � Methods. The following window displays:

Additional customizations

User’s Guide 207

6. Click New. The Source field clears for source code entry as follows:

7. In the Source box, enter the following:
clipboardFilled

dde isNil ifFalse: [

dde executeCommand: '[Paste]'.

].

This new method automatically pastes values held in the clipboard to
Excel. These values go in the clipboard when you lasso them with
the mouse.

8. Click Save. You are asked if you are creating a subclass method.
Click OK.

9. Click New. The window clears for source code entry.

Chapter 7 Customizing gOOi forms

208 P39-5020-00

10. In the Source box, enter the following:
pbExcelClicked

dde isNil ifTrue: [

'excel' startSessionProgram:

'\msoffice\excel\excel.exe' inputs: ''.

dde := DDEClientSession name: #DEMO

application: 'Excel' topic: 'Sheet1' item: ''.

dde initiate.

] ifFalse: [

dde executeCommand: '[Close]'.

dde terminate.

dde := nil.

].

This code starts Excel when you click the button the first time; it
closes Excel when you click it a second time.

11. Click Save. You are asked if you are creating a subclass method.
Click OK.

12. Click Close. You return to your gOOi form.

13. Create a new button called pbExcel. To do this, either press Ctrl+N,
or select Formitem � New Item. The New Item window displays
showing icons for available new items. Click the Button icon.

14. Type pbExcel in the Name field and click OK. You return to the gOOi
form, which displays your new pbExcel button.

Additional customizations

User’s Guide 209

15. Double-click the pbExcel button. The following Form Button Options
window displays:

16. In the Text field, delete the pb from pbExcel. The Text field
represents the external button name. (The Name field is the internal
name and must stay pbExcel.)

17. Click Methods and the Method Assignment window displays.

18. Select pbExcelClicked in the Available Methods box. You just
created this method.

Chapter 7 Customizing gOOi forms

210 P39-5020-00

19. Click >>Copy>>. The pbExcelClicked method displays in the
Assigned Methods box at the right:

20. Click OK. You return to the Form Button Options window.

21. Click OK. You return to your gOOi form.

22. Select File � Save.

23. Select File � Exit.

This sample Excel button is testable only if it is applied to the appropriate
gOOi form, and an English language version of Excel is in the path coded
in the method (\msoffice\excel\excel.exe).

To use the button, you need to make a host connection and run the host
application. At the appropriate window, click Excel. Select several data
fields by lassoing them with the mouse. When you release the mouse
button, the field values are inserted into Excel.

Additional customizations

User’s Guide 211

Chapter 7 Customizing gOOi forms

212 P39-5020-00

8
Host Navigation

Overview of Host Navigation
These sections describe how you can take control from the automation of
gOOi run-time and customize your application even further. With Host
Navigation methods and attributes, it is possible to use gOOi like an API
and do all of your graphical presentation with any style of ObjectStudio
controller.

Host Navigation methods lift any restrictions that the generality of gOOi
generation imposes on graphical presentation, and let you take
advantage of the flexibility of ObjectStudio.

Here are some examples of what you can do with Host Navigation:

♦ Design an MDI (Multiple Document Interface) controller for
presentation of your host data

♦ Gather host data from multiple host screens for presentation in one
gOOi form

♦ Automatically run cumbersome log-on procedures that require the
same user and password to be entered multiple times

User’s Guide 213

Host Navigation methods and attributes
gOOi provides a set of methods (Smalltalk code) and attributes
(variables) that you can use to navigate a host connection (that is,
session). For example, if you want to automate the CICS logon process
so that you don�t have to repetitively enter keyboard responses to a
series of logon screens , you can add code to the Just-In-Time custom
controller (GOOIJITCustomController). The following code illustrates the
methods and attributes used for this purpose. The line numbers shown
at the left of the code are not valid in Smalltalk, but were added to this
sample for use in the subsequent explanation.

1 startUp

2 | userID password userTran cicsTran acceptMsg welcomeMsg |

3 userID := 'USER'.

4 password := 'PASSWORD'.

5 userTran := 'TRAN'.

6 cicsTran := ‘CESN’.

7 acceptMsg := ‘been accepted’.

8 welcomeMsg := ‘WELCOME TO CICS 4.1.0’.

9 (self checkForString: acceptMsg at: {3 42}) ifTrue: [

10 self mainForm hide.

11 GOOIHostMonitor sleep.

12 (self waitForString: welcomeMsg at: {1 2}) ifTrue: [

13 self pressClear.

14 self enterString: cicsTran at: 1.

15 self pressEnter.

16 self enterString: userID at: 1.

17 self enterString: password at: 2.

18 self pressEnter.

19 self enterString: userTran at: 1.

20 self pressEnter.

21].

22 GOOIHostMonitor wakeUp.

23].

Chapter 8 Host Navigation

214 P39-5020-00

The following table explains each line of the sample code.

Stmt Code Explanation

1 StartUp The method name is startUp. This name follows the
Smalltalk convention of using lower case for the first
word, and beginning each subsequent word (Up) with an
upper case letter. A stub startUp method is included in
GOOIJITCustomerController for convenience. All
navigation for JIT should be placed in
GOOIJITCustomController.

2 | userID password
userTran cicsTran
acceptMsg
welcomeMsg |

Six local variables are defined for data that might change
between users or systems: userID, password, userTran,
cicsTran, acceptMsg, and welcomeMsg.

3 userID := 'USER' The userID local variable is set to the CICS user.
4 Password =

‘PASSWORD’
The password local variable is set to the CICS user’s
password.

5 userTran := 'TRAN' The userTran local variable is set to the transaction that
this user wants to start.

6 cicsTran := ‘CESN’. The cicsTran local variable is set to the CICS sign-on
transaction.

7 acceptMsg := ‘been
accepted’.

The acceptMsg local variable is set to the portion of the
CICS acceptance message for which this method
searches.

8 welcomeMsg :=
‘WELCOME TO
CICS 4.1.0’.

The welcomeMsg local variable is set to the CICS
welcome message.

9 (self checkForString:
acceptMsg at: {3
42}) ifTrue: [

The first screen that appears during CICS logon has the
message, “Your request has been accepted”. The
method looks for the “been accepted” part of this
message at row 3, column 42. The method proceeds to
the next line if this message is found, and continues at
line 23 otherwise. The self object that receives the
checkForString:at: message is the current class,
GOIJITCustomController. This screen does not need a
user response.

Host Navigation methods and attributes

User’s Guide 215

Stmt Code Explanation
10 self mainForm hide. The current Just-In-Time form is hidden so that

it does not appear while the navigation code is
executing.

11 GOOIHostMonitor sleep. Host monitoring is turned off so that the default
behavior of JIT (present a window with the user
ID and password) will not occur.
GOOIHostMonitor is the name of the gOOi
object that watches for host changes, and sleep
is a method in this class which renders this
object inactive.

12 (self waitForString:
welcomeMsg at: {1 2}) ifTrue:
[

The second screen that appears during CICS
logon has the message, “WELCOME TO CICS
4.1.0”. The method looks for this message at
row 1, column 2. The method proceeds to the
next line if this message is found, and
continues at line 21 otherwise.

13 self pressClear. The welcome message was found. Press the
CLEAR key in response so the logon process
can continue.

14 self enterString: cicsTran at: 1 The third screen that appears has a single entry
field. The method places CESN into this field.

15 self pressEnter. Press the ENTER key to start CESN.
16 self enterString: userID at: 1. The first entry field CESN is the user ID. MOve

USER into this field.
17 self enterString: password at:

2.
The second entry field for CESN is the
password. Move PASSWORD into this field.

18 self pressEnter. Press the ENTER key to complete CESN.
19 self enterString: userTran at:

1.
The fourth screen that appears has an entry
field for the user transaction. The method
places TRAN into this field.

20 self pressEnter. Press the ENTER key to start TRAN.
21] This closing bracket terminates the ifTrue block

of code that was begun on line 12.
22 GOOIHostMonitor wakeUp. Host monitoring is turned back on so that gOOi

will watch for host session changes and
present a gOOi form or JIT window for each
host screen.

23] This closing bracket terminates the ifTrue block
of code that was begun on line 9.

Chapter 8 Host Navigation

216 P39-5020-00

The preceding example reflects the object-oriented structure of Smalltalk.
As demonstrated in the example, Smalltalk code is built with objects (for
example, self) and messages to objects (for example, pressEnter).

Even the local variables are instantiated as objects. For example, userID
is an instance of the String object for which String methods can be used.
The following sections detail messages (methods) that are available to
gOOi objects in order to implement host navigation with gOOi.

A general rule to follow when writing code for host navigation logic is to
put the code with the object it is associated with. Do not place code
intended to navigate multiple objects within one object. For instance, do
not put code into GOOIJITCustomController that tries to bypass both a
host screen for which there is no generated gOOi form, and also a
generated gOOi form.

Host Navigation methods and attributes

User’s Guide 217

The following table is a summary of the objects, attributes (variables),
and methods (messages) available with gOOi Host Navigation:

Object Attributes Methods
gOOi form controller currentSession ENTERKeyPressed,�.

hostObject
pressCancel
pressEnter
pressKey:
pressPFn
refreshHostFor:
searchForPopup
subject

gOOi form host object currentSession refreshFields

refreshHostFor:

GOOIHostMonitor ealSessions setProfile:
sleep
sleeping
wakeup

gOOi session screenIDValue

searchRowColumn
flushGooiBufferToPs
getStringAtRow:column:le
ngth:

 searchString gooiBuffering
 gooiBuffering:

search
searchAll
searchNext
wait

Chapter 8 Host Navigation

218 P39-5020-00

Object Attributes Methods
GOOIJITController currentSession checkForString:

 entryFields checkForString:at:
enterString:at:
functionKeyPressed:
pressClear
pressEnter
refreshFields
refreshHostFor:
waitForString:
waitForString:at:

GOOIJITCustomController screenChangedOn:

startup

GOOIVTEmulatorCustomController checkForString:
checkForString:at:
enterString:
eraseToEndOfField
getStringAtRow:column:le
ngth:
pressEnter
pressTab
screenChangedOn:
startUp
waitForString:
waitForString:at:
windowDown
windowHome
windowLeft
windowRight
windowUp

Host Navigation methods and attributes

User’s Guide 219

Subsequent sections of this chapter provide details about how to use
these objects, attributes, and messages for coding host navigation.

Object: Controllers generated by the Application Generator
Each gOOi form consists of a controller for the visual display and a host
object for the host screen description. The object for the methods and
attributes in this section is the controller. Methods and controllers for this
object are described in the following pages.

Note that there are two other objects of concern when coding host
navigation for generated controller objects:

♦ The corresponding HostObject that was also generated by the
Application Generator

♦ The host session

The data flow is through the Host Object. If you send a transmission key
(for example, ENTER) to the host via host navigation, the data in the
Host Object is transferred to the host session. You must ensure that the
Host Object data is synchronized with the controller data to guarantee
correct results.

Chapter 8 Host Navigation

220 P39-5020-00

Methods
ENTERKeyPressed (and any method with KeyPressed as the suffix…for example,
PF1KeyPressed, PA3KeyPressed, …)

These �KeyPressed methods are only available when running with an
IBM mainframe host.

Description: Sends the appropriate key to the Host.

Assumptions: A session with the host exists.

Return value: The receiver.

Receiver modified: No.

Example:
self ENTERKeyPressed.

where self is the current controller.

hostObject

Description: Instantiates the appropriate GOOIHostObject for self and establishes the
subject for self. Should be used when navigating to gOOi Controllers not
opened by gOOi.

Assumptions: A session with the host exists.

Return value: A subclass of GOOIHostObject (usually generated by gOOi) or nil.

Receiver modified: No.

Example:
self hostObject.

where self is the current controller.

Methods

User’s Guide 221

pressCancel

Description: Sends the CLEAR key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
self pressClear.

where self is the current controller.

pressEnter

Description: Sends the ENTER key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
self pressEnter.

where self is the current controller.

Chapter 8 Host Navigation

222 P39-5020-00

pressKey: aString

This method is only available when using gOOi with an OpenVMS/UNIX
host via the direct TCP/IP connection.

Description: Sends the specified key to the host as a String object. aString is a
character, such as 'h', or a number, such as '1', from the keyboard, with
the exception of the F1 through F4 keys, which are specified as 'F1', 'F2',
'F3', and 'F4'.

Assumptions: A session with the host exists.

Return value: The receiver.

Receiver modified: No.

Example:
pbHelpClicked

self pressKey: 'F1'.

self pressKey: 'h'.

where pbHelpClicked is the method name, and self is the current
controller. In this example, the user clicks the Help button, and the F1
and h keys are sent to the host via pressKey:

pressPF1 … pressPF24

Description: Sends the PFn key to the Host in an IBM mainframe environment. In an
OpenVMS/UNIX environment, a host sequence is sent to the host of
either the F1 or F2 key followed by one or more numeric keys. For
example, the pressPF10 method sends an OpenVMS/UNIX host a PF2
key, then a 1 key, then a 0 key.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
self pressPF4.

where self is the current controller.

Methods

User’s Guide 223

refreshHostFor:aFieldName

Description: Synchronize the host session for a given fieldName.

Assumptions: aFieldName is an object of class Symbol. A session with the host exists.
aFieldName is included in the Host Object (it may have been deleted
from the controller).

Return value: The receiver.

Receiver modified: No.

Notes: Use the enterString: aString for: aFieldName method instead if the
controller data for aFieldName has changed and needs to be
synchronized with the Host Object.

Example:
self refreshHostFor: #efCommand.

where self is the current controller, and efCommand is an instance
variable in the Host Object.

searchForPopup

Description: Search the controller for an associated popup. Should only be used after
gOOi has opened the Controller.

Assumptions: A session with the host exists.

Return value: A popup controller if one is found, else nil.

Receiver modified: Yes.

Example:
popup := self searchForPopup.

popup notNil ifTrue: [

…

].

where self is the current controller, and popup is defined as a local
variable in the method.

Chapter 8 Host Navigation

224 P39-5020-00

subject

Description: Identifies the Host Object part of a gOOi form corresponding to a controller.
Should only be used after gOOi has opened the Controller or after the
hostObject method has been used.

Assumptions: A session with the host exists.

Return value: A subclass of GOOIHostObject (usually generated by gOOi) or nil.

Receiver modified: No.

Example:
self subject efCommand: aCommand.

where self is the current controller, and efCommand: is a set method in
the Host Object for the efCommand instance variable.

Attributes
currentSession

Description: Identifies the connection that gOOi has established with the host.

Attributes

User’s Guide 225

Object: Host Objects generated by the Application Generator
Each gOOi form consists of a controller for the visual display and a host
object for the host screen description. The object for the methods and
attributes in this section is the host object. Methods and controllers for
this object are described in the following pages. Host objects correspond
one-for-one with the generated controller objects. Host object classes
should only be generated by the gOOi Application Generator, and should
not be customized.

Methods
refreshFields

Description: Synchronize attributes of the HostObject with the gOOi session.

Assumptions: A session with the host exists.

Return value: The receiver.

Receiver modified: Yes.

Example:
self subject refreshFields.

where self is the current controller, and subject is the corresponding
Host Object.

refreshHostFor:aFieldName

Description: Synchronize the host session for a given fieldName.

Assumptions: aFieldName is an object of class Symbol. A session with the host exists.

Return value: The receiver.

Receiver modified: No.

Example:
self subject refreshHostFor: #efOption.

where self is the current controller, subject is the corresponding Host
Object, and efOption is an instance variable in the Host Object.

Chapter 8 Host Navigation

226 P39-5020-00

Attributes
currentSession

Description: Identifies the connection that gOOi has established with the host.

Object: GOOIHostMonitorController
The class for this object is the core of the gOOi system. The
GOOIHostMonitor manages all host application navigation automatically
(unless you are using the Host Navigation features described here).
There is always an instance of this class when gOOi is running, and the
instance name is �GOOIHostMonitor�. Methods and controllers for this
object are described in the following pages.

Methods
setProfile:aProfileName

Description: Set the active screen ID profile to the specified profile name.

Assumptions: The specified profile name is a valid screen ID profile.

Return value: Object of class Boolean: true if the active profile is set to the specified
profile name, and false if the specified profile name is not found.

Receiver modified: Yes.

Example:
(GOOIHostMonitor setProfile: 'MANTIS') ifFalse: [

self error: 'Severe error, MANTIS Profile missing!’.

].

where self is the controller with this method code that calls setProfile:,
and error: is a method inherited from the Object class.

Attributes

User’s Guide 227

sleep

Description: Disable gOOi automatic controller navigation based on host session
content.

Assumptions: None.

Return value: The receiver.

Receiver modified: Yes.

Example:
GOOIHostMonitor sleep.

sleeping

Description: Determine current mode of GOOIHostMonitor.

Assumptions: None.

Return value: An object of class Boolean.

Receiver modified: No.

Example:
GOOIHostMonitor sleeping ifTrue: [GOOIHostMonitor wakeUp].

The sleeping method returns either true or false. In this example, the
wakeUp method is called when true is returned.

wakeUp

Description: Activate gOOi automatic controller navigation based on host session
content.

Assumptions: None.

Return value: The receiver.

Receiver modified: Yes.

Example:
GOOIHostMonitor wakeUp.

Chapter 8 Host Navigation

228 P39-5020-00

Attributes
ealSessions

Description: An IdentityDictionary of sessions with the host, identified by EHLLAPI
short name as the Dictionary key. For TCP/IP connected session, the
Dictionary key is always #A. The value associated with the Dictionary
keys will be a gOOi Session object.

Attributes

User’s Guide 229

Object: gOOi Session
This object functions as the connection between gOOi and the host
system. All communication between gOOi and the host occurs with this
class/object. Methods and controllers for this object are described in the
following pages.

Methods
flushGooiBufferToPs

Description: Updates the host with the contents of the internal gOOi buffer. This is
used after the gooiBuffering option has been turned on, then host
updates executed via the refreshHostFor: and/or refreshHostFor:item:
methods.

Assumptions: None.

Return value: The receiver.

Receiver modified: No.

 This option applies only to the gOOi TCP/IP host connection. It has no
effect when using gOOi with an emulator

Example:
currentSession flushGooiBufferToPs.

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object.

Chapter 8 Host Navigation

230 P39-5020-00

getStringAtRow:column:length:

Description: Retrieves a string at the specified row and column for the specified length
from the object�s copy of the host data

Assumptions: None.

Return value: A String object.

Receiver modified: No.

Example:
str := currentSession getStringAtRow: 4 column: 1 length: 8.

where currentSession is an inherited instance variable (from
GOOIHostController), and str is defined as a local variable in the
method.

gooiBuffering

Description: Identifies whether the gooiBuffering option is on or off.

Assumptions: None.

Return value: Object of class Boolean: true if the option is on, and false if the option is
off.

Receiver modified: No.

 This option applies only to the gOOi TCP/IP host connection. It has no
effect when using gOOi with an emulator.

Example:
(currentSession gooiBuffering) ifTrue: [

count := 0.

].

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object, and count is a
local variable.

Methods

User’s Guide 231

gooiBuffering: aBoolean

Description: If gooiBuffering is turned on, host updates are queued to the internal
gOOi buffer. This option improves performance when executing a large
number of host updates before sending a transmit key to the host. These
host updates are made via the refreshHostFor: and/or
refreshHostFor:item: methods.

Assumptions: aBoolean is an object of class Boolean, either true (on) or false (off).

Return value: The receiver.

Receiver modified: No.

 This option applies only to the gOOi TCP/IP host connection. It has no
effect when using gOOi with an emulator.

Example:
currentSession gooiBuffering: true.

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object.

Chapter 8 Host Navigation

232 P39-5020-00

search

Description: Search the object�s copy of the host data for a target string. This string
and the starting row/column for the search are specified in object
attributes.

Assumptions: The searchString attribute has been set to the target string (for example,
�INV001�). The searchRowColumn attribute is an array with the starting
row and column (for example, {2 5}).

Return value: Array with row/column where target string was found, or empty array if
target string was not found.

Receiver modified: No.

Example:
rowCol := currentSession search.

rowCol isEmpty ifFalse: [

saveRow := rowCol at: 1.

].

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object, and rowCol is a
local variable.

Methods

User’s Guide 233

searchAll

Description: Search the object�s copy of the host data for a target string. The search
begins from row 1, column 1 regardless of the value of the
searchRowColumn attribute.

Assumptions: The searchString attribute has been set to the target string (for example,
�INV001�).

Return value: Array with row/column where target string was found, or empty array if
target string was not found.

Receiver modified: No.

Example:
rowCol := currentSession searchAll.

(rowCol = {23 2}) ifTrue: [

^ true.

].

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object.

Chapter 8 Host Navigation

234 P39-5020-00

searchNext

Description: Search the object�s copy of the host data for a target string. This string
and the starting row/column for the search are specified in object
attributes that were set by a previous search. The search begins at one
position past the starting row/column attribute.

Assumptions: The searchString and searchRowColumn attributes were set by a
previous search method which found the string.

Return value: Array with row/column where target string was found, or empty array if
target string was not found.

Receiver modified: No.

Example:
rowCol := currentSession searchNext.

(rowCol = {10 41}) ifTrue: [

^ true.

].

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object.

wait

Description: For emulators, the wait method waits for the host to return to an idle state
following a request (for example, refreshHostFor:item:). No wait occurs if
this method is executed when the direct TCP/IP connection of gOOi is
used.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
currentSession wait.

where currentSession is an inherited instance variable (from
GOOIHostController) that addresses the session object.

Methods

User’s Guide 235

Attributes
screenIDValue

Description: A string containing the host data at the row/column position of the active
screen ID profile.

searchRowColumn

Description: An array with the row and column at which searching is to begin. Used
by the search and searchNext methods.

searchString

Description: A string to be located in the host data by one of the search methods.

Chapter 8 Host Navigation

236 P39-5020-00

Object: GOOIJITController (Just-In-Time Controller)
This object/class presents a default Just In Time window for any host
application screen that gOOi cannot identify.

In contrast to controllers generated by the Application Generator, there is
no Host Object associated with GOOIJITController. Methods and
controllers for this object are described in the following pages.

GOOIJITController is only available with hosts that support a 3270 data
stream.

Methods
checkForString: aString

Description: Searches the session�s host data for a target string.

Assumptions: aString is an Object of class String.

Return value: object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(GOOIJIT checkForString: ‘Login’) ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

Object: GOOIJITController (Just-In-Time Controller)

User’s Guide 237

checkForString:aString at:anArray

Description: Searches the session�s host data for a target string at a target
row/column location.

Assumptions: aString is an object of class String. anArray is a 2-element Array object
consisting of the row and column of the target location (for example,
{3 72}).

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(GOOIJIT checkForString: ‘Login’ at: {8 27}) ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

enterString:aString at:location

Description: Copies a string to a target location in the session�s host data.

Assumptions: aString is an object of class String. location is either a 2-element Array
object consisting of the row and column of the target location, or a
Number object with the number of the entry field where the string is to be
copied.

Return value: The receiver.

Receiver modified: No.

Example:
GOOIJIT enterString:'MASTER' at: {8 34}.

where GOOIJIT is an instance of the GOOIJITController class.

Chapter 8 Host Navigation

238 P39-5020-00

functionKeyPressed: aKey

Description: Sends the specified key to the Host.

Assumptions: aKey is an Object of class Symbol. The key name may either be an
EHLLAPI value or logical mnemonic. A session with the host exists.

Return value: The receiver.

Receiver modified: No.

Example:
GOOIJIT functionKeyPressed: #ENTER.

where GOOIJIT is an instance of the GOOIJITController class.

pressClear

Description: Sends the CLEAR key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
GOOIJIT pressClear.

where GOOIJIT is an instance of the GOOIJITController class.

pressEnter

Description: Sends the ENTER key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
GOOIJIT pressEnter.

where GOOIJIT is an instance of the GOOIJITController class.

Methods

User’s Guide 239

refreshFields

Description: Synchronizes the dynamic host attributes of GOOJIT with the gOOi
session.

Assumptions: A session with the host exists.

Return value: The receiver.

Receiver modified: Yes.

Example:
GOOIJIT refreshFields.

where GOOIJIT is an instance of the GOOIJITController class.

refreshHostFor: aFieldName

Description: Synchronizes the host session for a given fieldName from a given
dynamic GOOIJIT controllerItem.

Assumptions: aFieldName is an object of class Symbol. A session with the host exists.

Return value: The receiver.

Receiver modified: No.

Example:
GOOIJIT refreshHostFor: #hostFieldR23C73.

where GOOIJIT is an instance of the GOOIJITController class, and
hostFieldR23C73 is a host screen entry field at row 23, column 73.

Chapter 8 Host Navigation

240 P39-5020-00

waitForString: aString

Description: Searches the session�s host data for a target string up to a maximum of
10 tries.

Assumptions: aString is an Object of class String.

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(GOOIJIT waitForString: ‘Password’) ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

waitForString:aString at:anArray

Description: Searches the session�s host data for a target string at a target
row/column location, up to a maximum of 10 tries.

Assumptions: aString is an object of class String. anArray is a 2-element Array object
consisting of the row and column of the target location (for example,
{3 72}).

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(GOOIJIT waitForString:'Pass' at: {9 27}) ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

Methods

User’s Guide 241

Attributes
currentSession

Description: Identifies the connection that gOOi has established with the host.

entryFields

Description: An array of updateable host session fields ordered by relative location
(top to bottom, left to right).

Chapter 8 Host Navigation

242 P39-5020-00

Object: GOOIJITCustomController (Just-In-Time Custom
Controller)

This class inherits the methods and attributes of GOOIJIT, its superclass.
Any host navigation logic for host screens that do not have matching
gOOi forms should be placed in this class.

This class should also be used by forms created in ObjectStudio outside
of the gOOi Application Generator that need to communicate with gOOi
attached applications (when there are no gOOi Application Generated
forms to be used with host navigation). Methods and controllers for this
object are described in the following pages.

GOOIJITCustomController is only available with hosts that support a
3270 data stream.

Object: GOOIJITCustomController (Just-In-Time Custom Controller)

User’s Guide 243

Methods
screenChangedOn: aSession

The screenChangedOn: method is very powerful because it affords you
the opportunity to examine the active host screen and identify it as having
a matching gOOi form, even though this host screen lacks a screen ID.
This method also has the potential to degrade gOOi performance
because it is called every time that the host screen changes. Ensure that
this method runs efficiently so that gOOi response time does not suffer.

Description: If implemented, called by the Host Monitor every time that a host screen
changes. Provides a way to identify a gOOi form for a host screen that
does not have a screen ID in a location matching one of the available
screen ID profiles.

Assumptions: If the host screen is identified as having a matching gOOi form, the
screenIDValue attribute of the session must be set with the gOOi form
name.

Return value: True if host screen is identified for which there is a gOOi form; otherwise
false.

Receiver modified: No.

Chapter 8 Host Navigation

244 P39-5020-00

Example:
screenChangedOn: aSession

(self checkForSignOn: aSession) ifTrue: [^ true.].

(self checkForPrintFacility: aSession) ifTrue: [^ true.].

^ false.

checkForSignOn: aSession

| rowCol |

aSession searchString: '5401.202'.

rowCol := aSession searchAll.

rowCol = {3 2} ifTrue: [

aSession searchString: 'User'.

rowCol := aSession searchAll.

rowCol = {20 28} ifTrue: [

aSession screenIDValue: 'SIGN_ON'.

^ true.

].

].

^ false.

checkForPrintFacility: aSession

| rowCol |

aSession searchString: 'Print Facility'.

rowCol := aSession searchAll.

rowCol = {1 33} ifTrue: [

aSession screenIDValue: 'MPFMME'.

^ true.

].

^ false.

Methods

User’s Guide 245

In this example, the screenChangedOn: method calls two other methods.
First, checkForSignOn: is executed and looks for 2 strings at 2 different
host screen row/column locations. If both strings are found,
checkForSignOn: sets the screen ID to �SIGN_ON� and returns true to
screenChangedOn:, which then returns true to the HostMonitor.

If checkForSignOn: returns false, screenChangedOn: calls
checkForPrintFacility:. If checkForPrintFacility: finds the string �Print
Facility� at row 1, column 33, the screenIDValue is set to �MPFMME� and
true is returned to screenChangedOn:, which in turn returns true to the
HostMonitor. If checkForPrintFacility: returns false, screenChangedOn:
returns false to the HostMonitor and normal gOOi host screen
identification processing continues.

Chapter 8 Host Navigation

246 P39-5020-00

startUp

Description: Automatically called by GOOIJIT the first time this GOOIJIT subclass is
opened. It is only called once per gOOi session.

Assumptions: This method would not normally be implemented if a start up file is used.

Return value: The receiver.

Receiver modified: No.

Example: The start up file sample, gOOiStartUpSampleMainframe.txt, contains
sample code that could be included in this method.

Attributes
This class inherits the attributes of GOOIJIT, its superclass.

Attributes

User’s Guide 247

Object: GOOIVTEmulatorCustomController
This class is the OpenVMS/UNIX parallel to GOOIJITCustomController.
Any host navigation logic for host screens that do not have matching
gOOi forms should be placed in this class.

This class should also be used by forms created in ObjectStudio outside
of the gOOi Application Generator that need to communicate with gOOi
attached applications (when there are no gOOi Application Generated
forms to be used with host navigation). Methods and controllers for this
object are described in the following pages.

GOOIVTEmulatorCustomController is only available with
OpenVMS/UNIX hosts.

Methods
checkForString: aString

Description: Searches the session�s host data for a target string.

Assumptions: aString is an Object of class String.

Return value: object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(currentSession emulator checkForString: ‘Login’) ifTrue: [

^ true.

].

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Chapter 8 Host Navigation

248 P39-5020-00

checkForString:aString at:anArray

Description: Searches the session�s host data for a target string at a target
row/column location.

Assumptions: aString is an object of class String. anArray is a 2-element Array object
consisting of the row and column of the target location (for example,
{3 72}).

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(currentSession emulator checkForString: ‘Login’ at: {8 27})
ifTrue: [

^ true.

].

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

enterString: aString

Description: Sends the specified string to the session�s host data at the current cursor
position.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator enterString: ‘User’.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Methods

User’s Guide 249

eraseToEndOfField

Description: Sends the key sequences to MANTIS that clear the data in the MANTIS
field from the current cursor position to the end of the field.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator eraseToEndOfField.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

getStringAtRow: aRow column: aColumn length: aLength

Description: Gets the string of specified length from the session�s host data at the
specified row and column.

Assumptions: A session with the host exists.

Return value: Object of class String.

Receiver modified: No.

Example:
x := currentSession emulator getStringAtRow: 3 column: 6
length: 8.

where currentSession is an inherited instance variable (from
GOOIHostController), emulator is an instance variable in the session
object, and x is a local variable in the method.

Chapter 8 Host Navigation

250 P39-5020-00

pressEnter

Description: Sends the ENTER key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
currentSession pressEnter.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

pressTab

Description: Sends the Tab key to the Host.

Assumptions: A session with the host exists.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator pressTab.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Methods

User’s Guide 251

screenChangedOn: aSession

The screenChangedOn: method is very powerful because it affords you
the opportunity to examine the active host screen and identify it as having
a matching gOOi form, even though this host screen lacks a screen ID.
This method also has the potential to degrade gOOi performance
because it is called every time that the host screen changes. Ensure that
this method runs efficiently so that gOOi response time does not suffer.

Description: If implemented, called by the Host Monitor every time that a host screen
changes. Provides a way to identify a gOOi form for a host screen that
does not have a screen ID in a location matching one of the available
screen ID profiles.

Assumptions: If the host screen is identified as having a matching gOOi form, the
screenIDValue attribute of the session must be set with the gOOi form
name.

Return value: True if host screen is identified for which there is a gOOi form; otherwise
false.

Receiver modified No.

Example:
screenChangedOn: aSession

(self checkForSignOn: aSession) ifTrue: [^ true.].

(self checkForDirectoryFacility: aSession) ifTrue: [^
true.].

^ false.

checkForSignOn: aSession

| rowCol |

aSession searchString: '(C) Cincom Systems, Inc. 2000'.

rowCol := aSession searchAll.

rowCol = {4 43} ifTrue: [

aSession screenIDValue: 'SIGNON'.

^ true.

].

Chapter 8 Host Navigation

252 P39-5020-00

checkForDirectoryFacility: aSession

| rowCol |

aSession searchString: 'Directory Facility'.

rowCol := aSession searchAll.

rowCol = {11 45} ifTrue: [

aSession screenIDValue: 'DIRFAC'.

^ true.

].

^ false.

In this example, the screenChangedOn: method calls two other methods.
First, checkForSignOn: is executed and looks for a string at row 4,
column 43. If the string is found, checkForSignOn: sets the screen ID to
�SIGNON� and returns true to screenChangedOn:, which then returns true
to the HostMonitor.

If checkForSignOn: returns false, screenChangedOn: calls
checkForDirectoryFacility:. If checkForDirectoryFacility: finds the string
�Directory Facility� at row 11, column 45, the screenIDValue is set to
�DIRFAC� and true is returned to screenChangedOn:, which in turn
returns true to the HostMonitor. If checkForDirectoryFacility: returns
false, screenChangedOn: returns false to the HostMonitor and normal
gOOi host screen identification processing continues.

startUp

Description: Automatically called by GOOIHostMonitor when the Host Monitor is
started. It is only called once per gOOi session.

Assumptions: This method would not normally be implemented if a start up file is used.

Return value: The receiver.

Receiver modified: No.

Example: The start up file sample, gOOiStartUpSampleUNIXDigital.txt, contains
sample code that could be included in this method.

Methods

User’s Guide 253

waitForString: aString

Description: Searches the session�s host data for a target string up to a maximum of
10 tries.

Assumptions: aString is an Object of class String.

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(currentSession emulator waitForString: ‘Password’) ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

waitForString:aString at:anArray

Description: Searches the session�s host data for a target string at a target
row/column location, up to a maximum of 10 tries.

Assumptions: aString is an object of class String. anArray is a 2-element Array object
consisting of the row and column of the target location (for example,
{3 72}).

Return value: Object of class Boolean: true if the string is found, and false if the string is
not found.

Receiver modified: No.

Example:
(currentSession emulator waitForString:‘Pass’ at: {9 27})
ifTrue: [

^ true.

].

where GOOIJIT is an instance of the GOOIJITController class.

Chapter 8 Host Navigation

254 P39-5020-00

windowDown

Description: Sends the keypad 2 key to the host, which moves the display down if
supported by the active MANTIS screen.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator windowDown.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

windowHome

Description: Sends the keypad 7 key to the host, which moves the display to the home
position if supported by the active MANTIS screen.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator windowHome.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Methods

User’s Guide 255

windowLeft

Description: Sends the keypad 4 key to the host, which moves the display left if
supported by the active MANTIS screen.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator windowLeft.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

windowRight

Description: Sends the keypad 6 key to the host, which moves the display right if
supported by the active MANTIS screen.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator windowRight.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Chapter 8 Host Navigation

256 P39-5020-00

windowUp

Description: Sends the keypad 8 key to the host, which moves the display up if
supported by the active MANTIS screen.

Assumptions: None.

Return value: None.

Receiver modified: No.

Example:
currentSession emulator windowUp.

where currentSession is an inherited instance variable (from
GOOIHostController), and emulator is an instance variable in the session
object.

Attributes
This class inherits the attributes of GOOIVTEmulator, its superclass.

Attributes

User’s Guide 257

Chapter 8 Host Navigation

258 P39-5020-00

9
Deploying a gOOi application

This chapter provides the steps for deploying a completed gOOi
application to a properly licensed end user (client) workstation. For a
gOOi application to run, the client must have:

♦ An ObjectStudio executable (for example, ostudio.exe)

♦ An application image (.img file, which you create, see below)

♦ All ObjectStudio DLLs

♦ Any emulator-specific DLLs

♦ Any required prompters (.pmt file, which you create)

A sample directory list is provided in the README file.

The following process assumes that if you use an emulator, the emulator
is licensed, installed, and operational on the client workstation.

The deployment process includes:

♦ Creating an ObjectStudio image (.img file) of your application in your
development environment

♦ Creating a deployment subdirectory on your development workstation
to hold your run-time/deployment entities

♦ Creating a subdirectory on the client workstation to accept the
application.exe file, .img file, and DLLs from the developer

♦ Copying the contents of the developer�s deployment subdirectory to
the corresponding client directory

♦ Making a host connection and running the application on the client
workstation

User’s Guide 259

gOOi application deployment steps
There are two ways to create an ObjectStudio image file (.img) for
deployment of your completed gOOi application on end-user
workstations:

♦ The standard Program Generator tool is available from the
ObjectStudio menu. This tool is the simpler and more automated of
the two choices, but creates a larger image file that may slow
execution on smaller client workstations. To make this tool easier to
use, all ObjectStudio classes that your application might need are
included in the generated image.

♦ The Small Program Generator (SPgen) requires more detailed
knowledge of the classes needed to run your application and will
often require iterative work to complete the process. The benefit of
SPgen is that it can produce a much smaller image that will speed
execution of your application on all client workstations. It is initiated
by starting ObjectStudio with the �l command line parameter. This
�l parameter requires the name of a text file, as in the following
example shortcut target:
C:\ostud630\ostudio.exe -lc:\ostud630\gooi\spgen\spgen63RunOnly.txt

The specified text file, spgen63RunOnly.txt, contains a list of
ObjectStudio classes that provide various functionality. It is installed
as a working sample in the spgen subfolder of the gOOi folder. Many
of the classes listed in this file are commented, and so are not
included in the generated image file.

The exclusion of unused classes allows the Small Program
Generator to produce a smaller image file than the standard Program
Generator. The commented classes implement product options.
Added functionality via form customizations may utilize some of these
options and may require the inclusion of some commented classes.

Chapter 9 Deploying a gOOi application

260 P39-5020-00

Using the standard Program Generator
When using the standard Program Generator, perform the following
steps on your developer’s workstation:

1. Run ObjectStudio.

2. At the ObjectStudio Workplace Desktop, click mouse button 2 in the
Work Area. A pop-up menu displays.

3. Select Load application. This opens the Applications picking list.

4. From the applications list, select gOOi Runtime and click Load.

5. From the Applications picking list, select your generated application,
click Load, then click Close.

6. Select Tools � Program Generator. After gOOi loads the System
Proxies, the following Program Generator message displays:

gOOi application deployment steps

User’s Guide 261

Chapter 9 Deploying a gOOi application

262 P39-5020-00

7. Reply Yes, and the System Proxies are loaded. After the loading
completes, the Program Generator window appears:

gOOi application deployment steps

User’s Guide 263

8. Set the following fields:

Field Description
Application name: Indicate the first item to be executed when your deployed

application opens. This must display GOOIHostMonitor.
Application
controllers:

Specify the first application. Highlight GOOIHostMonitor.

Image filename: Specify the name of the run-time image of your application. This
name usually reflects the application this represents (for example,
PAYROLL). An .img extension should follow the specified name.

Logo filename: Specify the DLL that loads logo.bmp (a banner page for your
application provided by ObjectStudio). If you do not want
logo.bmp loaded, delete this value.

Copy.Exe file Select this check box, so that the ObjectStudio executable is
copied during the generation process. It receives the same file
name prefix as the image (for example, for an image named
PAYROLL.IMG, the executable is PAYROLL.EXE).

Remove
Unreferenced Items

Do not select this check box.

Remove Method
Source

Select this check box, so that the source code is not included in
the created image file.

After generation: Select Application so that ObjectStudio will display the gOOi Host
Monitor window after image creation.

Controllers to be
removed:

Highlight any controllers that are unnecessary for execution so
that they are excluded from the image file.
Do not highlight:
(1) Anything that names your generated screens and prompters
(2) Anything that ends with the word monitor

Remove
components:

Check Reporting. Check OLE2 Support only if you know you are
not using OLE via the Word Wizard, Excel Wizard, or form
customizations.

Chapter 9 Deploying a gOOi application

264 P39-5020-00

The following Program Generator window shows the effects of setting the
fields per the preceding guidelines:

9. Click Save, and you will be prompted for a confirmation. Reply Yes,
and the generation process begins by displaying a Transcript
window. The length of the process depends on the power of your
workstation and the volume of generated entities. The gOOi Host
Monitor window displays when the generation completes if
Application was selected for �After generation�. When the process is
complete, the Generator places a .img file of your application in your
ObjectStudio directory.

gOOi application deployment steps

User’s Guide 265

10. Create a subdirectory on your development workstation to hold all
your run-time/deployment entities. This includes the following steps:

a. Place your application .img file and application .exe file in your
deployment subdirectory.

b. Copy all ObjectStudio DLLs from the DLLW32 subdirectory of
ObjectStudio.

c. Copy all .pmt files (prompters), if applicable, to your deployment
subdirectory.

d. Copy the gooi.ini file from the ObjectStudio directory to your
deployment subdirectory.

e. Copy the logo.bmp file from the ObjectStudio directory to your
deployment subdirectory.

11. On the client workstation, create a subdirectory to receive the
deployment entities from the developer.

12. Copy all entities from the developer�s deployment subdirectory
created in step 9 into the corresponding client directory created in
step 10.

13. If you use an external emulator, check your PATH to make sure it
includes the emulator. This should have been done automatically
when the emulator was installed.

14. Create the appropriate program groups and items.

15. Specify the application.exe file in the command line for your program
item.

16. On the client workstation, run your gOOi application (assuming an
active emulator, if you are using one). The GOOIHostMonitor
window displays; press Start if it has not been started automatically.
The host monitor task is minimized after the task is started. As the
application runs, your gOOi forms will display.

Chapter 9 Deploying a gOOi application

266 P39-5020-00

Using the Small Program Generator

Before beginning to use the small Program Generator, review the section
of the ObjectStudio documentation that explains the operation of this
option. It is important to understand that creating a small image can be
an iterative process of editing and testing the startup text file.

The advantage of the small program generator is that it creates a smaller
image file than the standard program generator. It is initiated by
executing ObjectStudio with a start up parameter (-l) that specifies an
input text file. This text file contains a list of ObjectStudio classes that
might be needed by the application(s) that are included in the image.
Classes that are not needed by the application(s) can be commented,
thus reducing the size of the created image file.

For example, in these 3 lines from an input text file:
cls\block.cls

w32\cls\block2.cls

"cls\bdecode.cls

The last line is commented (starts with a quote (�)) because bdecode.cls
is not needed in the image.

A number of working sample text files were installed with gOOi in the
spgen subfolder of the gOOi folder. The spgen64RunOnly.txt file is for
use with Release 6.4 of ObjectStudio for generating an image file when
OLE support is not necessary. Another sample text file,
spgen64RunOnlyOLE.txt, also works with Release 6.4 of ObjectStudio,
but includes class files for OLE support. This spgen subfolder also
includes files for ObjectStudio 6.3. Contact Cincom support before
attempting to use the small Program Generator if you are using a release
of ObjectStudio other than 6.4 or 6.3. The following steps assume that
you are using the Spgen63RunOnly.txt file with Release 6.3:

1. Run ObjectStudio with the �l command line parameter. The following
is an example of a shortcut target associated with a desktop icon:

C:\ostud630\ostudio.exe -lc:\ostud630\gooi\spgen\spgen63RunOnly.txt.

 If any error occurs, edit spgen63RunOnly.txt to remove comments
from required classes and retry this step.

2. The ObjectStudio Small Program Generator window displays:

gOOi application deployment steps

User’s Guide 267

3. Select File � Load Application from the menu. The Applications
window appears.

4. From the list of applications, select gOOi Runtime and click Load.
Also select and load all the gOOi applications you have generated
that you want to deploy. If any error occurs, edit spgen63RunOnly.txt
to remove comments from required classes and retry from step 1.

5. From the ObjectStudio Small Program Generator window, select File
� Save Image from the menu to save the image file with the name of
your choice, such as cust.img.

6. Test the image file by starting ObjectStudio with this file specified in
the �i command line parameter, such as: -icust.img. If your
application runs successfully, this image can be deployed to end-user
workstations. If any error occurs, edit spgen63RunOnly.txt to remove
comments from required classes and retry from step 1.

7. Continue at step 9 of the preceding procedure for the standard
Program Generator. The application .exe file referred to in that step
is just a copy of Ostudio.exe, renamed to match the image file name
(for example, cust.exe).

Chapter 9 Deploying a gOOi application

268 P39-5020-00

10
PC CONTACT file access

Overview of PC CONTACT file access

PC CONTACT file access is only available to IBM mainframe MANTIS
users with this feature authorized on their system. It can be run only with
the gOOi TCP/IP connection, and not via an emulator connection.

PC CONTACT provides upload/download file access between MANTIS
for the mainframe and personal computers. PC CONTACT lets you
extract data from files on the mainframe using MANTIS, and download
this information to a file on your PC. PC CONTACT also allows you to
read PC files from MANTIS programs.

PC CONTACT provides a direct connection between MANTIS and PC
files. For example, a simple MANTIS program can read rows from DB2
tables and insert the data from these rows into a file on your PC.
Conversely, it is easy to create a MANTIS program that directly reads
data from a PC file and populates a DB2 table.

User’s Guide 269

Options for PC CONTACT
To access the options for PC CONTACT:

1. Double-click the icon for gOOi Desktop Developer.

2. Double-click the icon for Settings.

3. Click the PC CONTACT button. The following window displays:

You can display this same dialog at any time while running gOOi. Right-
click near the border of the window to display the pop-up menu, then
select PC CONTACT from the list of menu items.

Chapter 10 PC CONTACT file access

270 P39-5020-00

Save/Open display options
By default, the first file access during an upload displays the common
Windows �Open� window:

The first file access during a download displays the common Windows
�Save As� window:

Options for PC CONTACT

User’s Guide 271

To eliminate these common dialogs, turn off the check box for display
Save and Open dialogs for PC CONTACT file access. If you do this, the
three subsequent radio buttons are enabled in the topic box for
Sequential file type if no Save/Open dialog is displayed. This file type
selection is necessary because the ACCESS view in MANTIS that
defines the PC file does not include a specification for the type of
sequential file access (BASIC, DIF, or TEXT). The type that you choose
will be used for all sequential file access when the common dialogs are
turned off.

If you turn off the Open/Save As common dialogs, PC CONTACT will
attempt to use the PC file name specified in the ACCESS view in
MANTIS. Do not turn off these common dialogs if you want to be able to
override the ACCESS view.

Numbered files floating point field format
If you access numbered files via PC CONTACT, this option specifies the
floating point field format. The choices are:

♦ MBF (Microsoft Binary Format). (Default) This is the floating point
format supported by interpretive BASIC.

♦ IEEE (IEEE standard 754 for Binary Floating Point). This is the
floating point format supported by the Intel 80 x 87 floating point co-
processor, and also be used in PC MANTIS, Microsoft C, and
Microsoft QuickBasic.

Chapter 10 PC CONTACT file access

272 P39-5020-00

Designing a MANTIS view for PC CONTACT
MANTIS views must be defined to access PC files. This section
identifies the options of the External File View Design Facility of MANTIS
that are relevant to PC CONTACT. It is intended as a supplement to the
Ad/Advantage MANTIS Facilities OS/390, VSE/ESA, P39-5001, which
covers the MANTIS External File View Design Facility in much greater
detail.

For more information on the commands you will need to access and
manipulate these views, refer to the AD/Advantage MANTIS Language
OpenVMS/UNIX, P39-1310. For more information on the types of PC
files that PC CONTACT can access, see �PC CONTACT supported file
types� on page 286.

When you select the Design External File View option from the MANTIS
Facility Selection menu, the following window displays:

The windows displayed in this section for working with the External File
View Design facility of MANTIS are gOOi forms. If you instead see Just
In Time windows when working with this facility, please contact Cincom
about getting a copy of the gOOi Windows client for the MANTIS
developer.

Designing a MANTIS view for PC CONTACT

User’s Guide 273

To create a new view, click the Create or update button. To update an
existing view:

1. Click the Library button to fetch the view.

2. Once the view has been retrieved, click the Create or update button.

Create or update file views
The Create or Update File Views option allows you to create a new PC
file view or update the definition of an existing file view. When you select
this option from the External File View Design Facility menu, the following
window displays:

Chapter 10 PC CONTACT file access

274 P39-5020-00

The following items on this window have particular considerations for PC
CONTACT.

Name
Specify the PC file name (including path information) in this field. You
can override this name at run time if the common dialog option is turned
on.

Password for viewing
Specify a password in this field only if a view will be used for uploading
data.

If a view includes only a password for viewing, PC CONTACT will
assume that an upload is intended, and the PC file must already exist.

Password for deleting/inserting
Specify a password in this field only if a view is to be used for a
download.

If a view includes only a password for deleting/inserting, PC CONTACT
will assume that a download is intended. If the target PC file already
exists, a warning message is displayed that asks if you want to replace it.

Indexed, sequential, or numbered
Specify either sequential or numbered for a PC file view. (The indexed
choice is for VSAM files only, and does not pertain to PC CONTACT.)

Access method
Specify PC for a PC CONTACT file view.

Maximum record size
Specify the exact record length for numbered files. This field is not used
for sequential files.

Designing a MANTIS view for PC CONTACT

User’s Guide 275

Reference variable name
MANTIS requires a record identification for sequential or numbered files
because there is no key defined for these files (as is the case for indexed
files). The reference variable is a standard BIG numeric field. MANTIS
allocates it (together with all the other variables defined in the file view
layout) during the processing of the ACCESS statement. This variable
has the same multiple buffer allocation and prefixing requirements as all
other variables defined in this file view.

The reference variable name must be unique within the MANTIS program
area. A sample name is FILENAME_REFER.

The reference variable contains the relative byte address (RBA) for
sequential files, or the relative record number (RRN) for numbered files.
The maximum number of records allowed in numbered files is 32,767.
For more information on using reference variables when executing
MANTIS programs, refer to the descriptions of the GET, UPDATE,
INSERT, and DELETE statements in the AD/Advantage MANTIS
Language OpenVMS/UNIX, P39-1310.

Chapter 10 PC CONTACT file access

276 P39-5020-00

Update file view layout
The Update File View Layout selection allows you to create a new file
view layout or modify an existing file view layout. When you select this
option from the External File View Design Facility menu, the following
window displays:

Designing a MANTIS view for PC CONTACT

User’s Guide 277

The following items on this window have particular considerations for PC
CONTACT.

Position
For numbered files, specify the position (relative to 1) of this field within
the file record. (Position is not used for sequential files because the
elements are positioned in the order that they are entered into the file
design.)

Format
Specify one of the following options from the drop down list box:

♦ ZONED. Used for zoned (unpacked) decimal

♦ BINARY. Used for one- or two-byte fields

♦ TEXT. Used for a character string (maximum 254)

♦ FLOAT. Used for floating point (either four or eight bytes)

Numbered file fields can use any of the above four formats. Sequential
file fields can be either ZONED or TEXT format.

Floating point can be either MBF (default) or IEEE. This can be
controlled via the PC CONTACT dialog of Settings.

The following table lists equivalent MANTIS and PC data types:

MANTIS data type PC data type
ZONED NUMERIC CHARACTER
BINARY BINARY or INTEGER
TEXT CHARACTER
FLOAT (4 BYTES) SINGLE PRECISION
FLOAT (8 BYTES) DOUBLE PRECISION

Chapter 10 PC CONTACT file access

278 P39-5020-00

Length
If you specify ZONED format for your PC file data and indicate the
number of decimal places (DEC), you must supply the length (LENGTH)
of the field on the file (the value supplied for LENGTH will disappear
when you press ENTER).

For PC SEQUENTIAL files, this field sets the length of the MANTIS
TEXT variable.

Offset
For PC NUMBERED files, if a field is part of a data structure that is also a
part of an array, then the occurrence of that field in the block of data is
positioned at an interval (offset) that is equal to the length of the data
structure.

This field does not apply to PC SEQUENTIAL files.

Designing a MANTIS view for PC CONTACT

User’s Guide 279

Sample PC file view design
In this example, assume that you want to create a file view for an Invoice
master file. It is a numbered file and contains fixed-length records. Each
record can accommodate up to 20 invoice items.

To create the file view:

1. Select the Design External File View option from the MANTIS Facility
Selection menu. The External File View Design Facility menu
displays:

Chapter 10 PC CONTACT file access

280 P39-5020-00

2. When you select the Create or Update File Views option from this
menu, the File View Design window appears. Enter the sample data
shown in the entry fields:

Notice that only a Deleting/Inserting password is specified for this
INVOICES_PC file, since this file view is to be used for downloading
records to the PC. The status is Active, enabling a MANTIS program
using this file view to proceed with the intended access. The file type
is Numbered. The maximum length of each record is 786 bytes,
excluding the length of the field itself.

3. Press ENTER or click OK to store your data. MANTIS automatically
returns to the External File View Design Facility menu.

Sample PC file view design

User’s Guide 281

To add elements to the file view layout:

1. Select the Update File View Layout option from the External File View
Design Facility menu. The following window displays:

Chapter 10 PC CONTACT file access

282 P39-5020-00

2. Enter your data and click Insert, one field at a time, as indicated
using the Element area of the window:

3. After you have added all the elements that you want, click Cancel to
return to the External File View Design menu.

Sample PC file view design

User’s Guide 283

To save this file view:

1. Click the Library button. The following window displays (note that the
current view automatically appears in the Name field):

2. Click Save to save the file view.

MANTIS exits to the External File View Design menu when the view is
saved. A confirmation message will appear in the lower left corner of the
menu, indicating that the view has been saved.

Chapter 10 PC CONTACT file access

284 P39-5020-00

Sample program
This section provides sample MANTIS download and upload programs.

The following sample MANTIS program downloads data from the
mainframe to the PC:

10 ENTRY PC_DOWNLOAD

20 .ACCESS V_REC("VSAM_VIEW")

30 .ACCESS PC_REC("SAMPLE_PC_ONE","WRITE")

40 .GET V_REC

50 .WHILE V_REC<>"END"

60 ..INSERT PC_REC

70 ..GET V_REC

80 .END

90 SHOW "File Download Complete": WAIT

100 EXIT

In the program above, line 20 designates the VSAM external file view that
the program reads, while line 30 defines the PC file where data is
inserted. The WHILE loop in lines 50 through 80 reads the VSAM file
and inserts the data into the PC file. This sample takes advantage of the
automatic mapping feature of MANTIS to link the fields from the VSAM
view and the PC view.

Use the following program to upload data from the PC to the mainframe:
10 ENTRY PC_UPLOAD

20 .VIEW_V_REC("VSAM_VIEW")

30 .ACCESS PC_REC("SAMPLE_PC_ONE","READ")

40 .GET PC_REC

50 .WHILE PC_REC<>"END"

60 ..INSERT V_REC

70 ..GET PC_REC

80 .END

90 SHOW "File Upload Complete": WAIT

100 EXIT

Compare lines 60 and 70 of the upload program with those in the
download program. Notice that to upload data, the PC file name and
VSAM view name are reversed.

Sample program

User’s Guide 285

PC CONTACT supported file types
PC CONTACT automatically reformats data to the required file type when
it downloads data from mainframe MANTIS to the PC. This section
contains supplemental information on each of these four file types.

Sequential BASIC files
A sequential BASIC file stores data in ASCII format using lists (series) of
expressions. These expressions (that is, data elements) can be of two
types:

♦ Numeric. Numbers which can contain a decimal point and a sign
(ZONED)

♦ String. Any text value or group of characters enclosed in quotes
(TEXT)

Each field is delimited by a comma, while each record is terminated by a
carriage return/line feed (shown as "cr/1f"). String expressions are
enclosed within double quotes:
"J. Smith","1234 Anywhere",1234.45,039458,"Widget",3,12.32,cr/lf

"J. Smith","2345 Anywhere",2345.45,039459,"Frames",1,13.67,cr/lf

"J. Smith","2334 Anywhere",1534.45,039460,"Widget",4,14.38,cr/lf

"J. Smith","1324 Anywhere",1534.45,039468,"Widget",2,16.62,cr/lf

Think of an ASCII expression as an element on a file. A group of
expressions (a list, or line) is equivalent to a record, and a group of lists
constitutes a file.

Sequential TEXT files
A sequential TEXT file stores data in ASCII format using one ASCII line
terminated with a carriage return/line feed for each data element defined
in the external file view. Data elements may be either numeric (ZONED)
or text (TEXT).

Chapter 10 PC CONTACT file access

286 P39-5020-00

Sequential DIF files
A Data Interchange Format (DIF) file (such as those used in
spreadsheets) stores data in tables. Labels can describe numeric data in
the tables, referring to all data in a table or to a specific column.
Programs can use the numeric data and ignore titles and labels.

DIF uses vectors and tuples to refer to columns and rows. All vectors
(columns) must be of equal length and all tuples (rows) in a table must be
of equal length. The following Profit Table has three tuples with three
data values in each.

Tuples:
500,450,50

300,275,25

100,90, 10

Profit table:

Item Price Cost Profit
Widget 500 450 50
Frames 300 275 25
Gizmo 100 90 10

This table uses four vectors and three tuples, as shown in the following
table:

Tuple Vector 1 Vector 2 Vector 3 Vector 4
 Item Price Cost Profit
Tuple 1 Widget 500 450 50
Tuple 2 Frames 300 275 25
Tuple 3 Gizmo 100 90 10

The DIF file has a header section and a data section. The header
section contains labels and information about the size of the table, while
the data section contains data values. The column headings Item, Price,
Cost, and Profit are labels.

PC CONTACT supported file types

User’s Guide 287

For more detailed information on DIF files, refer to the article by Candace
E. Kalish and Melinda F. Mayer, DIF: A Format for Data Exchange
between Application Programs, published by Byte Publications, Inc., in
November, 1981. This article was the source of the information
presented in this section.

The following example shows a simple DIF file. The header section of
the file begins with the name of the table, and ends with the DATA
header item. The data section in this example consists of 3 tuples, each
of which begin with the entry:

-1,0

BOT

The tuples and data section are terminated by the entry:
-1,0

EOD

Header Section:
TABLE \

0,1 Name of Table

"PROFITS" /

VECTORS \

0,4 Number of Vectors

"" /

TUPLES \

0,3 Number of Tuples

"" /

LABEL \

1,0 Label and Label Position

"ITEM" /

LABEL

2,0

"PRICE"

LABEL

3,0

"COST"

LABEL

4,0

"PROFIT"

DATA \

0,0 Data Header Item

"" /

Chapter 10 PC CONTACT file access

288 P39-5020-00

Data Section:
-1,0

BOT

1,0

"WIDGET "

0,500

V

0,450

V

0,50

V

--1,0

BOT

1,0

"FRAMES"

0,300

V

0,275

V

0,25

V

--1,0

BOT

1,0

"GIZMO "

0,100

V

0,90

V

0,10

V

-1,0

EOD

PC CONTACT supported file types

User’s Guide 289

Header Items
The header section of a DIF file contains three-line header items that
specify the name of the table, the number of vectors, the number of
tuples, and the labels and their positions. Header values are in one of
the following formats:

♦ TUPLES
0, count
" "

♦ LABEL
Vector number, line number
�label�

The DATA header item must be the last item in the DIF header. It
indicates that all values that follow are data values.

When creating a DIF file, PC CONTACT writes four header items
(TABLES, VECTORS, TUPLES, and DATA). When reading a DIF file,
PC CONTACT requires that the VECTORS, TUPLES, and DATA header
items be present. All other header items are ignored.

Chapter 10 PC CONTACT file access

290 P39-5020-00

Data Items
DIF data items are organized by tuples, and within the tuples by vector
order. A single data item is of the form:

type indicator, numeric value

string value

Type indicators are as follows:

Type
indicator

Description

-1 Specifies a special data value with number value of 0
and string value of either BOT (beginning of tuple) or
EOD (end of data)

0 Specifies that the data is numeric and should be
stored in the numeric value field

1 Specifies that the data is a string and the string value
should be stored in the string value field. Possible
string values are V (numeric value), NA (not
available), ERROR (invalid calculation), TRUE (with
number value of 1), and FALSE (with number value of
0)

BOT must be used to indicate the beginning of each tuple in the data
section. EOD must be used to indicate the end of the last tuple in the file.

PC CONTACT supported file types

User’s Guide 291

Numbered files
Numbered files allow direct (random) access to specific records in a file.
Since each record is assigned a number at the time it is inserted in the
file, records can be retrieved from any position in the file by specifying the
number of the desired record.

One advantage to numbered files is that, because records are accessed
directly, it is not necessary to begin at the front of the file and read all the
information to retrieve the desired record. Thus, information can be
retrieved more quickly than when using sequential files.

In addition, numbered files often store numbers in binary format, instead
of in the ASCII format (typically used in sequential files). Therefore,
numbered files require less diskette storage space than sequential files.

When accessing a numbered file in BASIC, the file must be opened in
random mode, the layout for the data defined in a field statement, and
data accessed by GET or PUT statements.

Chapter 10 PC CONTACT file access

292 P39-5020-00

A
IBM mainframe considerations

Platform considerations
This appendix provides information specific to users of IBM mainframes.
Please also see �Downloading screens from MANTIS� on page 111, for
related information.

To use the Universal Export Facility (UEF) on the IBM mainframe (MVS),
perform the following steps:

1. Ensure that the UEF files are defined.

 UEF requires two ESDS VSAM data sets. The first DEFINE is for the
UEF data file, and the second is for the UEF log file:

DEFINE CLUSTER (NAME(your.dataset.name)-
VOLUMES(nnnnnn)-
SHAREOPTIONS(2 3)-
REUSE-
NONINDEXED-
RECORDSIZE(40 254)-
FREESPACE(50 50))-

DATA(NAME(your.dataset.name.DATA)-
CONTROLINTERVALSIZE(4096)-
RECORDS(20000 2000))

DEFINE CLUSTER (NAME(your.dataset.name)-
VOLUMES(nnnnnn)-
SHAREOPTIONS(2 3)-
REUSE-
NONINDEXED-
RECORDSIZE(40 254)-
FREESPACE(50 50))-

DATA(NAME(your.dataset.name.DATA)-
CONTROLINTERVALSIZE(4096)-
RECORDS(2000 200))

User’s Guide 293

2. Export the screens and prompters.

 The following sample batch MANTIS job will export all screens that
begin with the letter C for the gOOi user:
//JOBNAME JOB (parm,parm),'gooi',CLASS=Q,MSGCLASS=T,

// MSGLEVEL=(1,1),USER=*UID,PASSWORD=*PSW,NOTIFY=*UID

//*

//STEP1 EXEC PGM=MANTISB

//STEPLIB DD DSN=your.batchmantis.linklib,DISP=SHR

//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=133

//SYSUDUMP DD SYSOUT=*,DCB=BLKSIZE=133

//TERMINAL DD SYSOUT=*

//PRINTER DD SYSOUT=*,DCB=BLKSIZE=133

//*

//SETPRAY DD DSN=your.mantis.cluster,DISP=SHR

//CSOT DD DSN=your.mantis.transfer,DISP=SHR

//EXPCLU DD DSN=your.uef.cluster,DISP=SHR

//EXPLOG DD DSN=your.uef.log,DISP=SHR

//KEYBOARD DD *

GOOI;GOOI;

<BLANK=ON>;<FAULT=ON>;<ECHO=ON>;<PAGESIZE=24X80>;

1;

CONTROL:EXP_MAIN_SCB;

EXP;;;C*;;;S;;;;;;;;

<PA2>

<PA2>

<PA2>

/*

//

3. You can also export the screens and prompters into the data file
through online UEF. If you use this approach, close this file to CICS
after running the export in order to ensure that the VSAM buffers are
flushed.

Appendix A IBM mainframe considerations

294 P39-5020-00

4. REPRO to a sequential data set and transfer to the PC.

 The UEF data file must then be REPROed to a sequential data set
prior to moving it to the PC. This sequential data set must be defined
as variable, with a record length of 258. The following example
contains JCL for the REPRO on MVS:
//JOBNAME JOB (parm,parm),'gOOi',USER=*UID,PASSWORD=*PSW,

// MSGCLASS=T,NOTIFY=*UID,MSGLEVEL=(1,1),TIME=(,15),CLASS=Q

//BACKUP EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=T

//UEFINP DD DSN=your.UEF.cluster,DISP=SHR

//SEQOUT DD DSN=your.sequential.file,DISP=(,CATLG),

SPACE=(TRK,(2,1),RLSE),UNIT=SYSDA,

DCB=(BLKSIZE=2584,LRECL=258,RECFM=VB,DSORG=PS)

//SYSIN DD *

REPRO INFILE(UEFINP) OUTFILE(SEQOUT)

/*

//

The sequential file can be transferred to the PC using your tool of
choice, but you must ensure that the EBCDIC character set of the
mainframe is translated to the ASCII equivalent on the PC.

Platform considerations

User’s Guide 295

Appendix A IBM mainframe considerations

296 P39-5020-00

B
Emulator considerations

How gOOi recognizes emulators
This appendix provides the settings necessary for gOOi to recognize a
specific emulator. In most cases, the short session name is being
established. (The short session name is an EHLLAPI requirement.)

These discussions assume that the emulator is already functioning (that it
has been successfully installed and a host session has been
established). Make sure that the PATH contains your emulator. Consult
the appropriate subsection for your emulator. Even though the emulator
works properly, gOOi may not recognize it until you perform the steps
outlined for the appropriate emulator.

Emulators

PC3270
Check the following items to ensure that gOOi can recognize this
emulator:

♦ Make sure the directory where the emulator is installed is in your path
(default = PERSONAL COMMUNICATIONS).

♦ Under Appearance � Window Setup, make sure the check boxes
are selected for each of the following: Short Session ID, Session
Name (gOOi Session must be in the entry field), and Separator (-).

♦ When you change the keyboard mapping within the emulator, be
sure to include between the braces any key command that is not in
the list box. For instance, to map a key to the PA2 function, select
Assist � Keyboard setup � Customize. Specify [PA2] in the window
for changing current actions for the selected key.

User’s Guide 297

EXTRA!
Check the following items to ensure that gOOi can recognize this
emulator:

♦ Make sure the directory where the emulator is installed is in your path
(default = Program Files\E!PC).

♦ Under Options � Global preferences � Advanced � HLLAPI short
name, place the path to your .EDP session file.

RUMBA
Check the following items to ensure that gOOi can recognize this
emulator:

♦ Make sure the directory where the emulator is installed is in your path
(default = Program Files\walldata\RUMBA).

♦ When installing RUMBA, be sure to select the System Options bullet.
If this bullet is not selected, API will not be available in the Options
menu.

♦ Once the emulator is up, select Options � API � Identification and
set the session short name. Under Configuration, check Convert null
characters to spaces.

KEA!
Check the following items to ensure that gOOi can recognize this
emulator:

♦ Make sure you have KEA! 4.23 or later installed.

♦ The directory where KEA! is installed must be in the path ahead of
any other emulator.

♦ The session must have a 1-character name (for example, A.KTC) in
the USER subdirectory of KEA!

♦ Keyboard mapping within the emulator must be performed to enable
PF key functions. To do this, select Options � Keyboard. This gives
you the Keyboard Mapping Panel. Press Keyboard on the panel. A
picture of the PC keyboard displays simultaneously with the
Keyboard Mapping Panel.

Appendix B Emulator considerations

298 P39-5020-00

The following describes how to map PC key F7 to PF7:

a. On the Keyboard Mapping Panel, click the box labeled PC key.
Press F7. F7 [76] should display in the box. The Map to: box
should display Sequence.

b. On the keyboard picture, click PF1 followed by the numeric 7.
The box labeled Value should show <PF1><Keypad 7>. As you
map keys, they are added to the Mapped Keys: box.

Repeat steps a and b to map the keys you want. When you are
done, click Done. When you exit the emulator, save the changes to
your session when prompted by KEA!.

Generic EHLLAPI
In addition to the other emulators listed in �Emulators� on page 297, gOOi
also supports any emulator that is IBM EHLLAPI-compatible. Check the
following items to enable gOOi support for such an emulator:

♦ gOOi must be installed using Generic EHLLAPI as the emulation
option.

♦ The directory where the emulator is installed must be in the PATH
statement.

♦ You must specify the name of your emulator�s DLL that supports
EHLLAPI, along with the procedure name for EHLLAPI within this
DLL.

Finding the correct DLL can require some experimentation. Many DLLs
may be available, but not identified in the emulator documentation. Look
for hll, hal, or hap in the file name. If you are unsure, contact your
emulator vendor.

gOOi provides two generic EHLLAPI selections for the Host Connection
because of inconsistencies in EHLLAPI implementations across
emulators. The EHLLAPI selection works with some emulators that have
a mixed implementation of the 16-bit and 32-bit EHLLAPI specifications.
The EHLLAPI32 selection works with those emulators that have a
complete 32-bit EHLLAPI interface. Contact Cincom if you are not sure
which selection is appropriate for your emulator.

Emulators

User’s Guide 299

Reflection
Check the following items to ensure that gOOi can recognize this
emulator:

♦ The directory where the emulator is installed is in your path.

♦ The HLLAPI short session name is specified. You can verify this by
selecting Setup � Terminal, or Setup � View Settings � HLLAPI
Short Name.

Reflection for UNIX and Digital
Check the following items to ensure that gOOi works with this emulator:

♦ The directory where the emulator is installed is in your path.

♦ The MFC42.DLL file is in your path. The REFLECT32.DLL module of
gOOi for Reflection2 support requires this Microsoft DLL. Contact
Cincom support if you do not have MFC42.DLL available on your
system.

Appendix B Emulator considerations

300 P39-5020-00

C
Screen Registry and AD/Advantage

Screen registry and AD/Advantage
The Screen Registry tool is necessary for AD/Advantage, and can also
be used for other gOOi forms. By default, gOOi displays a form
(ObjectStudio controller) with a name based on the screen ID. For
example, screen ID CLSC1 is associated with the CLSC1Controller. Also
by default, there is a one-to-one relationship between screen IDs and
forms.

The registry allows you to override these default behaviors and associate
one or more screen IDs with a user interface (ObjectStudio controller) of
a name that does not match the screen ID. The Screen Registry is
accessed from the cascaded menus available after choosing File from
the gOOi Workplace menu:

User’s Guide 301

After installing gOOi, you can see in the Screen Registry that the
ADV_MNUController that is included for AD/Advantage support is
associated with many screen IDs:

This example show how gOOi�s ADV_MNUController form is associated
with multiple AD/Advantage system transactions such as SYS, LIST,
EDIT, and UTILITY.

Outside AD/Advantage, the Screen Registry can be useful for gOOi
forms generated via Dynamic Screen Capture. During the screen
capture process, a screen ID must be specified. If an ID is entered that
does not match the ID on the screen (or if a different ID is later added to
the screen), you can associate the ID and form so that gOOi will
recognize and display it. For example, say a screen ID of ABCDEF is
assigned in Dynamic Screen Capture to a form with a screen ID of
INV001. To associate INV001 with ABCDEFController, first choose
ABCDEFController from the User Interfaces drop down list box. Specify
INV001 in the Screen ID entry field and click the Add>> button. After the
OK button is selected, gOOi registers the association and will then
present the ABCDEFController when it encounters the INV001 screen ID.

Appendix C Screen Registry and AD/Advantage

302 P39-5020-00

D
gOOi class files and names

gOOi classes
gOOi uses the following class files. The corresponding class names are
shown in parentheses:

Emulator Communication class files
GOOIEALS.CLS (GOOIEALSession)
GOOIKEAS.CLS (GOOIKEASession)
GOOIXTRA.CLS (GOOIEXTRASession)
GOOIRUMB.CLS (GOOIRUMBASession)
GOOIHAPI.CLS (GOOIEHLLAPISession)
GOOIRFLT.CLS (GOOIREFLECTIONSession)
GOOIREFL.CLS (GOOIREFLECTION2Session)
GOOIPC32.CLS (GOOIPC3270Session)

Telnet class files
GOOITNPOOLDICT.CLS (GOOITelnetPoolDictionaries)
GOOIEMUSESS.CLS (GOOIInternalSession)
GOOISTRTRAN.CLS (GOOIStringTranslator)
GOOITELNETSESS.CLS (GOOITelnetSession)

TN3270 class files
GOOIEMULATOR.CLSGOOIAID.CLS (GOOITN3270Aid)
 (GOOI3270EmulatorController)
GOOITELNETMGR.CLS (GOOITN3270Manager)
GOOITNCURSOR.CLS (GOOITN3270Cursor)
GOOITNDISPLAY.CLS (GOOITN3270Display)
GOOITNSTREAM.CLS (GOOITN3270Stream)

User’s Guide 303

TNVT class files
GOOIVTEMULATOR.CLS (GOOIVTEmulatorController)
GOOIEMUVTSESS.CLS (GOOIInternalVTSession)
GOOITELNETMGR.CLS (GOOIVTEmulatorCustomController)
GOOITELNETVTSESS.CLS (GOOITelnetVTSession)

Generator class files
GOOIHSCR.CLS (GOOIHostScreen)
GOOIHFLD.CLS (GOOIHostField)
GOOIHAPP.CLS (GOOIHostApplication)
GOOIHOST.CLS (GOOIHostFile)
GOOIGNSC.CLS (GOOIGenScreen)
GOOIGNAP.CLS (GOOIGenApplication)
GOOIGNFD.CLS (GOOIGenField)
GOOIBDAP.CLS (GOOIHostInterfaceBuilder)

Run-time class files
GOOISESS.CLS (GOOISession)
GOOIHCTL.CLS (GOOIHostController)
GOOIGENC.CLS (GOOIGenericController)
GOOIGENCVT.CLS (GOOIGenericVTController)
GOOIGENM.CLS (GOOIGenericMenuController)
GOOIPOPP.CLS (GOOIPopupController)
GOOIPRMP.CLS (GOOIGenericPrompterController)

gOOi user interfaces
GOOIBRWS.CLS (GOOITemplateHierarchyBrowser)
GOOIFUNC.CLS (GOOIFunctionKeysDefinition)
GOOIMONT.CLS (GOOIHostMonitor)
GOOISPLT.CLS (GOOIFileSplitter)
GOOICONF.CLS (GOOIConfigurationSettings)
GOOIWORK.CLS (GOOIWorkplace)
GOOI.CLS (GOOIController)
GOOIEMU.CLS (GOOISelectEmulatorController)
GOOIFLDD.CLS (GOOIFieldDetectorController)
GOOIPATDEF.CLS (GOOIPatternsDefinitionController)
GOOIWIZA.CLS (GOOIScreenIdLocatorController)

Appendix D gOOi class files and names

304 P39-5020-00

Supporting classes
GOOIKEYPATTERN.CLS (GOOIKeyPattern)
GOOIWDWZ.CLS (GOOIWordWizardController)
EXCELOLE.CLS (GOOIExcelOLE)
GOOITBDEF.CLS (GOOIToolbarDefinitionController)
GOOIXLWZ.CLS (GOOIExcelWizardController)
GOOIADA.CLS (GOOIADATransactionsController)
GOOICONTACT.CLS (GOOIContactController)
GOOIRTLE.CLS (GOOIReTitleController)
GOOISERVERTIMEOUT.CLS (GOOIServerTimeoutController)
WORDOLE.CLS (GOOIWordOLE)

Utility class
GOOISETP.CLS (GOOISetup)

Just-In-Time classes
GOOIJIT.CLS (GOOIJITController)
GOOIJITC.CLS (GOOIJITCustomController)
GOOIJITM.CLS (GOOIJITMantisController)
GOOIJITP.CLS (GOOIJITPopupController)

Messages
GOOIMSGS.CLS (Class GOOIMessages)

BMS converter
BMS.CLS (Class GOOIBMS)
BMSFLD.CLS (Class GOOIBMSField)
BMSINPUT.CLS (Class GOOIBMSINPUTFILE)
BMSINT.CLS (Class GOOIBMSIntController)
BMSMAP.CLS (Class GOOIBMSMap)
BMSMSET.CLS (Class GOOIBMSMAPSET)
KEYWORD.CLS (Class GOOIIBMKeyWord)
PARSER.CLS (Class GOOIIBMParser)
STATEMT.CLS (Class GOOIIBMStatement)
UEF.CLS (Class GOOIUEFObject)
UEFSCR.CLS (Class GOOIUEFScreen)
UEFSCRF.CLS (Class GOOIUEFScreenField)

gOOi classes

User’s Guide 305

MFS converter
MFS.CLS (Class GOOIMFS)
MFSFLD.CLS (Class GOOIMFSField)
MFSINPUT.CLS (Class GOOIMFSInputFile)
MFSINT.CLS (Class GOOIMFSintController)
MFSMAP.CLS (Class GOOIMFSMap)
MFSMSET.CLS (Class GOOIMFSMapSet)
MFSKEYWD.CLS (Class GOOIMFSKeyWord)
MFSPARSE.CLS (Class GOOIMFSParser)
MFSSTMT.CLS (Class GOOIMFSStatement)
MFSUEF.CLS (Class GOOIMFSObject)
MFSSCRN.CLS (Class GOOIMFSScreen)
MFSSCRNF.CLS (Class GOOIMFSScreenField)

UEF Generator
GOOIUEFG.CLS (Class GOOIUefGeneratorController)
GOOIUEFL.CLS (Class GOOIUEFFormFieldsListController)
GOOIUEFF.CLS (Class GOOIUEFGenField)
GOOIUEFR.CLS (Class GOOIUEFGenerator)
GOOIUEFP.CLS (Class GOOIUEFGenApplication)
GOOIUEFS.CLS (Class GOOIUEFGenScreen)
GOOIUEFC.CLS (Class GOOIUEFControllerItemWrapper)

Default templates
IBM3191.CLS (Class IBM3191Controller)
IBM3191P.CLS (Class IBM3191PopupController)
ASCIITRM.CLS (Class ASCIITerminalController)
ASCIIPOP.CLS (Class ASCIIPopupController)
GOOIVTTERMKEYS.CLS (Class GOOIVTTerminalController)
GOOIVTPOPUPKEYS.CLS (Class GOOIVTPopupController)
REFL2TRM.CLS (Class Reflection2TerminalController)
REFL2POP.CLS (Class Reflection2PopupController)

Appendix D gOOi class files and names

306 P39-5020-00

E
Rules for screen IDs and MANTIS
prompter IDs

This appendix provides the rules and options for screen IDs and MANTIS
prompter IDs for use with gOOi.

Screen ID rules
A screen ID must have at least 2 characters (0�9, A�Z). The ID must
begin with a letter and cannot have embedded or trailing blanks.

The following are examples of valid screen IDs:

♦ CLSC01

♦ CUSTOMERSCREEN

The following are examples of invalid screen IDs:

♦ 1 SCREEN (does not begin with a letter, and has an embedded
blank)

♦ SCREEN_TO_DISPLAY (contains underscores)

♦ -SCREEN 1 (contains a hyphen, does not begin with a letter, and has
an embedded blank)

User’s Guide 307

Screen ID options
gOOi attempts to recognize a screen ID at one of the profile locations
specified in Settings. gOOi supports a number of options for identifying
existing screen IDs. These options are illustrated in the following
MANTIS examples:

♦ Your screen definition can be a field containing the text of the screen
ID, having the exact position defined in Settings. For example:

FIELD ""(

POSITION(2,2)

SIZE=5

ATTRIBUTES(HED,MAS)

MASK="CLSC1"

)

This is the definition of a screen ID at row 2, column 2, length 5, with
the value CLSC1. In gOOi Settings, the screen ID row and column
are each set to 2. gOOi looks for the string CLSC1 at location 2, 2.

♦ Your screen definition can be a field containing the text of the screen
ID, not having exact position defined in Settings. This is considered
an embedded screen ID:

FIELD ""(

POSITION(2,1)

SIZE=30

ATTRIBUTES(HED,MAS)

MASK="*CLSC1****** Title Bar *******"

)

This example assumes that the screen ID row and column are each
set to 2 in the gOOi Settings. The preceding field definition (row 2,
col 1, length 30) overwrites the screen area where the screen ID is
supposed to be. gOOi takes the part of this field that corresponds to
the screen ID position (row 2, col 2, len 5). Thus, gOOi looks for the
string CLSC1 at location 2, 2.

Appendix E Rules for screen IDs and MANTIS prompter IDs

308 P39-5020-00

♦ Your screen definition can be a field that does not contain text
because the value is set dynamically during run time. In this case, the
value of the screen ID displayed must be the name of the screen
object. For example:

SCREEN "CLSC1"(

LANGUAGE="ENGLISH"

DEVICE(24,80)

DESCRIPTION="Screen for new client"

DOMAIN(22,80)

ATTRIBUTES(BOT,NOF,NOA,WIN,AUW)

MASK_CHAR="#"

FILL_CHAR="|"

FIELD "SCREEN_ID"(

POSITION(2,2)

SIZE=5

ATTRIBUTES(HED,MAS)

)

);

In this example, the screen ID field will be filled at run time. The
value of this field must be set to CLSC1, which is the name of the
screen. gOOi looks for the string CLSC1 to display at location 2, 2.

Screen ID options

User’s Guide 309

Prompter ID rules
Since MANTIS prompters do not contain fields, the prompter ID must be
displayed between parentheses at the end of the prompter description.
The ID must be an alphanumeric string of at least 2 characters, starting
with a letter. For example:

PROMPTER "CLPR01"(

LANGUAGE="ENGLISH"

DESCRIPTION="Information about Client (CLPR01)"

NEXT_PROMPTER="CLPR02"

...

gOOi uses the description text displayed on the first line of the emulator
to define which prompter to open. In this example, the screen ID of the
prompter is CLPR01.

Appendix E Rules for screen IDs and MANTIS prompter IDs

310 P39-5020-00

F
Host-PC translation tables

Translation tables
The key mapping included in the default IBM3191Controller and default
IBM3191PopupController is shown in the shaded portions of the following
table:

Host key ASCII key Host key ASCII key Host key ASCII key
Alt @A Cursor Down @V PF13 @d
Backtab @B Not used @W PF14 @e
Clear @C Reserved @X PF15 @f
Delete Char @D Caps Lock @Y PF16 @g
Enter @E Cursor Right @Z PF17 @h
Erase EOF @F Backspace @\ PF18 @i
Help @H Home @0 PF19 @j
Insert @I PF1 @1 PF20 @k
Jump @J PF2 @2 PF21 @l
Copy @K PF3 @3 PF22 @m
Cursor Left @L PF4 @4 PF23 @n
Enlarge @M PF5 @5 PF24 @o
New Line @N PF6 @6 PA1 @x
Print @P PF7 @7 PA2 @y
Finish (Quit) @Q PF8 @8 PA3 @z
Reset @R PF9 @9 SysReq @A@H
Shift @S PF10 @a Attn @A@Q
Tab @T PF11 @b CurSet @A@J
Cursor Up @U PF12 @c Erlnp @A@F

User’s Guide 311

The key mapping included in the default GOOIVTTerminalController and
default GOOIVTPopupController is as follows:

Function
key

Host
sequence

Function
key

Host
sequence

F1 F1, 1 F14 F2,1,4
F2 F1, 2 F15 F2,1,5
F3 F1, 3 F16 F2,1,6
F4 F1, 4 F17 F2,1,7
F5 F1, 5 F18 F2,1,8
F6 F1, 6 F19 F2,1,9
F7 F1, 7 F20 F2,2,0
F8 F1, 8 F21 F2,2,1
F9 F1, 9 F22 F2,2,2
F10 F2,1,0 F23 F2,2, 3
F11 F2,1,1 F24 F2,2,4
F12 F2,1,2 Enter Enter6
F13 F2,1,3 Cancel Cancel,

Appendix F Host-PC translation tables

312 P39-5020-00

The key mapping included in the default ASCIITerminalController is as
follows:

Function key Host sequence

F1 PF1, 1
F2 PF1, 2
F3 PF1, 3
F4 PF1, 4
F5 PF1, 5
F6 PF1, 6
F7 PF1, 7
F8 PF1, 8
F9 PF1, 9
F10 PF2, 1, 0
F11 PF2, 1, 1
F12 PF2, 1, 2

PAGEDOWN ^Z

The key mapping included in the default ASCIIPopupController is as
follows:

Function key Host sequence
F7 PF1, 7
F8 PF1, 8
PAGEDOWN ^Z

Translation tables

User’s Guide 313

The key mapping included in the default Reflection2TerminalController is
as follows:

Function key Host sequence

F1 870,831
F2 870,832
F3 870,833
F4 870,834
F5 870,835
F6 870,836
F7 870,837
F8 870,838
F9 870,839
F10 871,831,830
F11 871,831,831
F12 871,831,832

PAGEDOWN 870,867

The key mapping included in the default ASCIIPopupController is as
follows:

Function key Host sequence

F7 870,837
F8 870,838

PAGEDOWN 870,867

Appendix F Host-PC translation tables

314 P39-5020-00

G
gOOi error messages

Error messages

This appendix lists the gOOi error messages. These messages are in
the GOOIMessages class as a set of Smalltalk pool dictionaries.

GOOIMessages class
The first 4 characters of each message is the identifier (for example,
HOST for HOST0003). It can be referenced against the gOOi
subdirectory of ObjectStudio to find the class that issues the error.

BDAP0004 Screen ID is missing or invalid. Please check screen
definition <screen-name>.

Explanation This is a warning message. gOOi encountered a screen
during generation that is missing the screen ID at the specified location,
or the screen ID at that location is invalid.

Action Add or correct the screen ID for the specified screen, or utilize
the screenChangedOn: method of host navigation to recognize the
screen.

BRWS0001 You cannot edit keys for <controller-name>.

Explanation When using the Template Hierarchy Browser, you tried to
modify either the GOOIGenericController or the GOOIPopupController.

Action Create a subclass of these controllers and modify this new
subclass.

User’s Guide 315

BRWS0002 The class <class-name> already exists.

Explanation When using the Template Hierarchy Browser, you specified
a new class name that already exists.

Action Choose a different class name that does not conflict.

BRWS0006 <class-name> is not a valid class name.

Explanation When using the Template Hierarchy Browser, you specified
an invalid class name.

Action Check the class name spelling.

CONF0001 Horizontal Repeat Spacing Factor must be greater than
zero.

Explanation In Generation Options, you entered 0 as the Horizontal
Repeat Spacing Factor.

Action Change this value so that it is greater than 0.

CONF0002 Please enter a valid row number. Row number range is
1 - 43.

Explanation An invalid row number was specified for the screen ID row
in Settings.

Action Specify a value between 1 and 43.

CONF0004 Please enter a valid column number. Column number
range is 1 - 132.

Explanation An invalid column number was specified for the screen ID
column in Settings.

Action Specify a value between 1 and 132.

EMU0001 < item > must be specified to start the emulator.

Explanation One of the emulator items under the Advanced dialog of
HostConnections is missing. The item is either the Emulator .exe file,
Emulator session file, or Emulator session ID.

Action Contact Cincom support for assistance.

Appendix G gOOi error messages

316 P39-5020-00

EMU0002 Emulator support unavailable.

Explanation The class file for support of the selected emulator could not
be loaded.

Action Contact Cincom support for assistance.

FUNC0001 <syntax-error> at line <line-number>.

Explanation When defining function keys, you entered Smalltalk
method code that contained a syntax error.

Action Change the indicated line of Smalltalk code.

FUNC0002 You must select a controller in the list.

Explanation When defining function keys, you attempted a Generate
without specifying a controller.

Action Enter a controller name.

FUNC0003 No mapping is defined.

Explanation When defining function keys, you attempted a Generate
without specifying menu headers.

Action Enter at least one menu header.

FUNC0004 This is not a valid import file.

Explanation The import file that was specified for the menu option in
Function Keys Definition does not contain a valid key mapping.

Action Check that the correct file was selected.

GOOI0001 You must first select the location of your files.

Explanation Before you can add form elements, you must define the
directory where the extract files are located.

Action Click Browse to open the directory selection window or select the
Browse extract path in the Options menu.

GOOIMessages class

User’s Guide 317

GOOI0002 The application name must be entered.

Explanation The Application Generator needs an application name to
create a folder for the generated forms and an application file to load the
generated forms.

Action On the Application Generator window, enter a name in the
Application field (maximum eight characters).

GOOI0003 Parent class <class name> is not loaded.

Explanation The classes that are defined in the Settings interface (in
the Generation Options window) are not loaded into the system.

Action Verify/perform both of the following tasks:

♦ Use the ObjectStudio Load file� or Load application� menu to load
these classes.

♦ With the Settings interface, set the parent class to another class that
is loaded (for IBM users, the default is IBM3191Controller for regular
forms).

GOOI0005 Popup parent class <class name> is not loaded.

Explanation The classes that are defined in the Settings interface (in
the Generation Options window) are not loaded into the system.

Action Verify/perform both of the following tasks:

♦ Use the ObjectStudio Load file� or Load application� menu to load
these classes.

♦ With the Settings interface, set the pop-up parent class to another
class that is loaded (for IBM users, the default is
IBM3191PopupController for pop-up forms).

GOOI0006 This is not a valid layout file!

Explanation You have tried to load a layout file that does not have a
valid structure (selecting File � Open layout).

Action You can edit the file and verify that the first line contains the
following text: �gOOi LAYOUT DEFINITION�.

Appendix G gOOi error messages

318 P39-5020-00

GOOI0007 A popup must be defined with a Screen.

Explanation You have tried to add a pop-up element into an empty form
definition. Pop-up screens can only be defined with one or more Screen
elements.

Action You must add a Screen element before you can attach a pop-up
element to it.

GOOI0008 You cannot define two <Menu|Prompter>s with the same
Form ID.

Explanation You have tried to add a menu or a prompter to a Form ID
that already contains one of these elements. Menus or prompters must
have their own Form IDs and cannot be mixed with other screen
elements.

Action Select another Form ID in the list and repeat the add action.

GOOI0011 You cannot define a <Menu|Prompter> and other
components with the same Form ID.

Explanation You have tried to add a menu or a prompter to a Form ID
that already contains another element. Menus or prompters must have
their own Form ID and cannot be mixed with other screen elements.

Action Select another Form ID in the list and repeat the add action.

GOOI0012 You cannot define a <Screen|Header|Footer|Popup> and a
<Menu|Prompter> with the same Form ID.

Explanation You have tried to add a screen, header, footer, or pop-up to
a Form ID that already contains a menu or a prompter.

 Action Select another Form ID in the list and repeat the add action.

GOOI0014 This extract file does not contain a prompter
definition.

Explanation You have tried to add a file that does not contain a
prompter definition.

Action Verify that your .exp file contains a �PROMPTER� string at the
beginning.

GOOIMessages class

User’s Guide 319

GOOI0016 Unable to open file <file-name>.

Explanation gOOi could not open the loadable applications list file.

Action Check to see whether the loadable applications list file is
installed. The file name is lappiniw.cls, which is located under the
W32\CLS subdirectory of ObjectStudio.

GOOI0017 Unable to update loadable application init file.

Explanation gOOi could not open the loadable applications list file.

Action gOOi was unable to add the application to the loadable
application init file lappiniw.cls. Ensure that the file in your environment is
not read-only.

GOOI0018 For a pop-up, the CONVERSE must be at (1,1).

Explanation The dynamic CONVERSE feature is not available for pop-
ups.

Action Use only the default of 1@1 for pop-ups.

GOOI0024 Log file size is greater than <file size>.

Explanation This is a warning message that the size of the Application
Generator log file is greater than the size set in the log file options.

Action Clear the log file, first saving the contents if desired.

GOOI0026 Error(s) occurred - select OK to review the log file
details..

Explanation This message box is displayed when the Application
Generator stops because of an error..

Action Go to the most recent data at the end of the log file to locate the
error.

Appendix G gOOi error messages

320 P39-5020-00

GOOI0027 Error(s) occurred - please enable log file via the
Menu, then rerun the Generate..

Explanation This message box is displayed when the Application
Generator stops because of an error, and the log file is not enabled.

Action Ensure that the log file is enabled so that the error will be
captured, then run the Application Generator again.

GOOI0028 <file-name> is already included in Form <form number>.

Explanation The file that you are trying to add to a form is already
included in the form.

Action Verify the contents of the form.

GOOI0033 Empty form already exists.

Explanation You are trying to add another form to an application that
already has an empty form available for adding items.

Action Use or delete the current empty form.

GOOI0035 Cannot remove all forms - Stop Generation to exit.

Explanation You cannot use selective generation to remove all the
forms in the Application.

Action Run the Application Generator with at least one form selected for
generation.

GOOI0036 Warning(s) occurred - select OK to review the log file
details.

Explanation This message is displayed at the end of Application
Generation if a warning condition occurs during the generation
processing.

Action Go to the end of the log file to view the results from the last
generation.

GOOIMessages class

User’s Guide 321

HOST0002 File missing or path invalid.

Explanation gOOi could not open the loadable applications list file.

Action Check to see whether the loadable applications list file is
installed. The file name is lappiniw.cls, which is located under the
W32\CLS subdirectory of ObjectStudio.

HOST0005 gOOi does not support HORIZONTAL 255 fields.

Explanation The extract file that you want to generate contains a field
definition with a horizontal repeat of 255, which means a dynamic setting
of this option at run time.

Action None. This feature is not supported by the gOOi Application
Generator.

MONT0001 EAL Error : Unable to retrieve sessions list.

Explanation OpenVMS/UNIX and IBM emulators: The HostMonitor has
tried and failed to connect to the emulator in order to obtain a list of the
running sessions.

Action Verify/perform all of the following:

♦ Verify that your session has a �short name� (A-Z).

- Using KEA!, it means that your configuration file (.KTC) must
have a name with 1 unique character.

- Using EXTRA!, it means that you must attach a short name to
your session (Options > Global Preferences > Advanced).

With other emulators, consult the emulator documentation.

♦ Verify that the directory of your emulator is in the path.

♦ Verify that your emulator is started and running. The HostMonitor will
only retrieve opened sessions.

♦ If you are using an IBM host emulator, verify that you have selected
the proper emulator in the HostMonitor.

Appendix G gOOi error messages

322 P39-5020-00

MONT0003 Unable to initiate conversation with session <session
name>.

Explanation OpenVMS/UNIX only: The HostMonitor has tried and failed
to initiate a DDE conversation with KEA!

Action Verify both of the following items:

♦ Verify that your session has a �short name� (A�Z). Your
configuration file (.KTC) must have a name with 1 unique character.

♦ Verify that your emulator is started and running. The HostMonitor will
only retrieve opened sessions.

MONT0005 EAL Error < n >. Unable to register client for
<session-name>.

Explanation You attempted to register the gOOi client with the emulator
and failed.

Action Verify/perform all of the following:

♦ Verify that your session has a �short name� (A�Z).

- Using KEA!, it means that your configuration file (.KTC) must
have a name with 1 unique character.

- Using EXTRA!, it means that you must attach a short name to
your session (Options > Global Preferences > Advanced).

With other emulators, consult the emulator documentation.

♦ Verify that the directory of your emulator is in the path.

♦ Verify that your emulator is started and running. The HostMonitor will
only retrieve opened sessions.

♦ If you are using an IBM emulator, verify that you have selected the
proper emulator in the HostMonitor.

GOOIMessages class

User’s Guide 323

MONT0006 EAL Error < n >. Unable to connect client for
<session-name>.

Explanation You attempted to establish a connection to an emulator
session and failed.

Action Verify/perform all of the following:

♦ Verify that your session has a �short name� (A-Z).

- Using KEA!, it means that your configuration file (.KTC) must
have a name with 1 unique character.

- Using EXTRA!, it means that you must attach a short name to
your session (Options > Global Preferences > Advanced).

With other emulators, consult the emulator documentation.

♦ Verify that the directory of your emulator is in the path.

♦ Verify that your emulator is started and running. The HostMonitor will
only retrieve opened sessions.

♦ If you are using an IBM emulator, verify that you have selected the
proper emulator in the HostMonitor.

SPLT0007 Loop condition detected! Please ensure the UEF file
has the proper format.

Explanation The File Splitter did not reach the end of file during parsing.

Action This error usually occurs because the UEF format is different
between IBM mainframe MANTIS and OpenVMS/UNIX MANTIS. IBM
mainframe MANTIS requires the line, �MANTIS UEF 110n� at the
beginning of the input file, where n is a number between 4 and 9.

SPLT0008 File could not be created, error code: n.

Explanation The File Splitter could not create individual files from the
UEF input file. The error code is the return code received by
ObjectStudio from its file creation request to Windows.

Action This error might be because you have no available space on your
disk. Another possible cause is that the folder where ObjectStudio tries
to create the file is write protected.

Appendix G gOOi error messages

324 P39-5020-00

SPLT0009 UEF File could not be accessed, error code: n.

Explanation The File Splitter could not locate the specified input UEF
file.

Action Check the spelling of the file name.

SPLT0010 <file name> is not in UEF format. Splitting is not
possible.

Explanation The specified input file does not contain data in UEF
format.

Action Check the contents of the specified file.

WDWZ0001 You must enter a method name.

Explanation The Word Wizard requires a name for the method to be
generated in the specified controller.

Action Specify a method name.

WDWZ0002 This is not a legal method name. Try: < name >.

Explanation The specified method name contains is invalid. Ensure
that the name does not includes only alphanumeric characters

Action Specify a different method name.

WDWZ0003 You must enter a button label.

Explanation If you request that the Word Wizard create a button in the
controller, you must specify a label for this button.

Action Specify a label name for the button.

WDWZ0004 This method already exists.

Explanation The Word Wizard cannot create the specified method
because it already exists.

Action Specify a different method name.

GOOIMessages class

User’s Guide 325

WDWZ0005 You must select a Word field.

Explanation You selected a controller field and clicked the Link button
without selecting a corresponding Word field.

Action Select a Word field from the list.

WDWZ0006 You must select a controller field.

Explanation You selected a Word field and clicked the Link button
without selecting a corresponding controller field.

Action Select a controller field from the list.

.WDWZ0008 You must select a Word .doc file.

Explanation When using the Word Wizard, you must select a Word
document before choosing the Next button.

Action Select a Word document.

WDWZ0009 You must enter the character used for field
identification.

Explanation When using the Word Wizard, you must select a character
that precedes every field name before choosing the Next button.

Action Select a field definition character.

WDWZ0012 <item> does not exist in the language dictionary.

Explanation When using the Word Wizard, a parameter could not be
located in the language dictionary.

Action Contact Cincom support for assistance.

Appendix G gOOi error messages

326 P39-5020-00

H
Using the UEF Generator

Using the UEF Generator
The Universal Export Facility (UEF) Generator tool is for MANTIS users
who wish to create a UEF file from their gOOi form(s), then upload this
file to the host and import it into MANTIS.

User’s Guide 327

To use the UEF Generator, perform the following steps:

1. Specify the name of the UEF file to be generated.

2. Select the type of host system: IBM mainframe, OpenVMS, or UNIX.

3. Select the gOOi form from which the UEF file will be generated.

4. Specify the MANTIS screen name that will be used for the screen on
the host.

5. Specify the MANTIS screen description that will be given to the
screen on the host.

6. If the gOOi form does not already contain a screen ID, specify one to
be added to the UEF file. This ID will be added at the location
indicated by the current profile.

7. Click Add to insert this information into the generation list.

8. Repeat steps 3 through 7 for each form from which a UEF file is to be
generated.

9. Click Generate to create the UEF file.

You can preview which fields are to be generated for a form by clicking
Fields. The Form Fields List window shows all the fields on the form and
whether a UEF field will be generated for each field. You can override
the YES/NO setting in the Generate column by clicking Set.

Appendix H Using the UEF Generator

328 P39-5020-00

Glossary of terms

button
An object that the user can press (click) to initiate an action. Contains
either text or an image (bitmap).

check box
Presents the user with a choice.

class
An ObjectStudio object that determines the structure and behavior of
objects called instances.

class browser
A utility window in ObjectStudio that lets you browse the class hierarchy,
view the list of methods for a class, and create and modify classes and
methods.

class method
A method associated with a class object, executed by sending a
message to the class.

class variable
A variable defined in a class, and shared by all instances of that class.

controller
A class in ObjectStudio that manages communications between the user
and the interface.

form
A GUI window that is moveable and sizable. A form has a title bar and
can have a menu bar, toolbar, and status line.

User’s Guide 329

global variable
A variable that is available to all objects in the Smalltalk environment.

inheritance
A characteristic of an object-oriented language that allows a class to
share all methods of all classes that reside above it in the class hierarchy.

instance
An instance of a class is an object that was created by the class, and
whose behavior and internal structure are determined by the class. For
example, 7 is an instance of the Integer class.

instance variable
An internal variable of an instance that is not shared with any other
object. Instance variables are used to store data for the object.

instantiation
Creation and allocation of memory for an object.

lassoing
The technique of clicking and holding down mouse button 1 while
dragging toward the lower right until all target fields are selected.

literal
A general term for constants that are explicitly constructed in source
code, such as numbers and strings.

local variable
A temporary variable defined in a method, delimited by vertical bars.

message
A request to an object to carry out an operation. All actions in Smalltalk
are initiated via messages.

Glossary of terms

330 P39-5020-00

method
A named procedure that performs an operation. A method consists of
temporary (local) variables and code.

nil
The only instance of UndefinedObject, the nil object represents an
undefined value. All variables are initialized to nil.

object
An object is the fundamental building block of ObjectStudio. An object is
a self-contained entity that has its own memory, data, and behavior.

receiver
The object to which a message is directed. In the code, self
‘pressENTER’, self is the receiver.

self
A pseudo-variable in Smalltalk that is used to send messages from an
object to itself.

super
A pseudo-variable in Smalltalk that is used to send messages from an
object to the superclass of the object.

superclass
A class from which subclasses inherit data and behavior. Also known as
a parent class.

symbol
A symbol is a special kind of string that is read only. Unlike strings,
symbols with the same value are identical (the same object).

Glossary of terms

User’s Guide 331

Glossary of terms

332 P39-5020-00

Index

A

AD/Advantage
considerations 301
Footer option 135
headers and footers 79, 135
hiding key descriptions 62
tool description 22

ADV_MNUController 302
Application controllers field 264
Application field 264
Application Generator 21
application layout, saving 145
Application name field 264
applications

deploying 259
development process 23
generating

forms 141
same several times 145

integrating
with Excel 153
with Word 149

testing 109
updating loadable 145

ASCII
considerations 98
keys 311

ASCIIPopupController 66
ASCIITerminalController 63
attributes

color 60
FUL 129
hidden 60
high intense 60
matching forms and host

screens 59
protected 60
reverse 60
setting 60
underline 60

B

behaviors, inherited 93, 103
bitmap, of logo 264
BMS 24, 82
BMS Converter 22
buttons

example of event-driven
customization

creating an event-driven
button with an existing
Smalltalk method 203

creating an event-driven
button with Smalltalk 206

introduction 203
labels, pattern definition 75
spin buttons for numeric fields

191

C

cell coordinates, displaying 90
character, height and width 62
check box, assigning set method

176
class files

and forms 25
BMS converter 305
communication 303
default templates 306
generator 304
messages 305
MFS converter 306
run-time 304
support 305
Telnet 303
TN3270 303
TNVT 304
UEF Generator 306
used by gOOi 303
user interface 304
utility 305

colors
field

background and foreground
62

changing 169
set attribute 60

properties 68
window background 62

column, screen ID 46

User’s Guide 333

command line, including 62
components

of forms 127
order specification 134

configuration
procedure 41
screen settings 45

considerations
AD/Advantage 301
emulators 297
IBM platform-specific 293
OpenVMS

Connect timeout value 53
Emulator Check Intervall 56
Host address 53
Just In Time GUI

Just In Time window 56
Pause value 55
Port number 53
Screen Tag option 58

controllers
creating a pop-up subclass 96
deleting unnecessary 264
making parent class for

generation 108
new 100
saving a function key map

subclass 96
Controllers to be removed field

264
CONVERSE 49
coordinates of a field, displaying

90
Copy.Exe File field 264
CUSTOM directory 96

customization
changing

field color and font 169
field presentation type 172
field size automatically 167
field size manually 167

editing a form 162
example of event-driven

customization
creating an event-driven

button with an existing
Smalltalk method 203

creating an event-driven
button with Smalltalk 206

introduction 203
grouping fields 180
moving fields 164
overview 159

D

data, transferring
to Excel 153
to Word 149

Delete field 264
deployment of a gOOi application

259
Designer

reference resource 25
toolbar, viewing 163

development process 23
directory, UEF files 131
display resolution, recommended

setting 126, 140
down arrow key 33
dynamic

fields, vertical repeat 119
inheritance 104

Dynamic CONVERSE 129, 136
Dynamic Screen Capture

control description 87
description 21
process description 86

Index

334 P39-5020-00

E

EHLLAPI emulation 299
emulators

EXTRA! 298
Generic EHLLAPI 299
KEA! 298
PC3270 297
recognizing 297
Reflection 300
Reflection2 300
selecting 51

ENFIN, how it works with gOOi
24

error messages 315
Escape sequence, specifying 52
ESDS cluster, UEF images on

117
event-driven customization

example
creating an event-driven button

with an existing Smalltalk
method 203

creating an event-driven button
with Smalltalk 206

introduction 203
Excel Wizard

description 22, 153
matching gOOi form fields 154
using 154

exp files
creating 118
for MANTIS objects 119

exporting
key map text file 94
prompters 294
screens 294

EXTRA! emulator 298
extract file

selecting 136
types 127

F

fields
aligning 165
attributes 59
changing

color and font 169
field size automatically 167
field size manually 167

excluding from forms 143
grouping graphically 180
identifying

in Excel spreadsheet 154
in Word document 150

item consistency 176
linking

to Excel 155
to Word 151

marking positions 89
matching gOOi form

to Excel spreadsheet 154
to Word document 151

moving 164
presentation type, changing

172
tab order 159
viewing on forms 146

File Splitter
creating .exp files with 118
description 21
usage rules 85

files
directory for UEF 131
extract considerations 127
logo bitmap 264
overriding 145
overwriting with same name

122, 124
pmt 80
saving to the CUSTOM

directory 96

Index

User’s Guide 335

folder, temporary storage of
forms 146

fonts
field, changing 169
properties 67
specifying 62

Footer option 135
footers, AD/Advantage 79
format, of new item 176
forms

and class files 25
changing

field color and font 169
field presentation type 172
field size automatically 167
field size manually 167

components, specifying 130
consistent format of items 176
customizing

bringing a form into
ObjectStudio Designer 161

grouping fields graphically
180

overview 159
default format 24
effects of screen resolution

126, 140
example of event-driven

customization
creating an event-driven

button with an existing
Smalltalk method 203

creating an event-driven
button with Smalltalk 206

introduction 203
Footer option 135
for AD/Advantage transactions

302
generating

overview 125
procedure 141
restrictions 127
setting options 62

grouping fields graphically 180
headers and footers 135
inherited visual items 103

item traversal 159
keeping open 50
MANTIS, status line 129
Menu options

data items 291
description 136
equivalent MANTIS and PC

data types 278
sequential DIF tables 287

moving fields 164, 166
Pop-up option 135
previewing 139
profile verification 143, 144
Prompter option 136
reducing display size 163
sample specifications 139
Screen option 135
setting configuration options

27, 41
setting field attributes 60
specifying components 127
viewing

generated, with host
connection 148

generated, without host
connection 147

overview 146
ungenerated, using Preview

146
FTP, copying UEF images with

117
FUL attribute 129
function keys

accessing from menus 24
assigning to host commands 98
creating a template subclass 94
executing 93
mapping 91
specifying a map 63
translation tables 311
using hotspots 72

Function Keys Definition 22
function keys option 32

Index

336 P39-5020-00

G

gap, adding between toolbar
items 79

generation log 140
generation options for forms 45,

62
Generic EHLLAPI emulator 299
gOOi

class files 303
BMS converter 305
communication 303
default templates 306
generator 304
messages 305
MFS converter 306
runtime 304
support 305
Telnet 303
TN3270 303
TNVT 304
UEF Generator 306
user interface 304
utility 305

component descriptions 21
customizing interfaces

changing field color and font
169

changing field presentation
type 172

changing field size
automatically 167

changing field size manually
167

editing a form 162
example of event driven

customization, introduction
203

example of event-driven
customization, creating an
event-driven button with an
existing Smalltalk method
203

example of event-driven
customization, creating an
event-driven button with
Smalltalk 206

grouping fields graphically
180

moving fields 164, 166
overview 159

deploying an application 259
description 19
error messages 315
forms, generating 134
functionality description 24
generating application forms

141
loading 42
match form fields

to Excel spreadsheet 154
to Word document 151

relationship to ENFIN 24
sample form specifications 139
Tools

Excel Wizard 153
Word Wizard 149

Workplace 45
gooi.ini file

copying in order to deploy
application 266

editing to remove, replace, or
insert a pattern 36

prompter files path 80
saving gOOi generation options

in 45
saving profile information in 46

GOOIGenericController 93
GOOIPopupController 93

H

headers and footers
AD/Advantage 79, 135
AD/Advantage requirements

132
hidden field attribute 60
high intense field attribute 60
home keys 33
host

application
capturing screens 86
screen settings 45

attributes 59
commands, defining function

keys 98
fields, excluding from

generated forms 143
keys 311

Index

User’s Guide 337

Host Monitor
connection to host 112
description 21
using 112

HostObject 126
host-PC translation tables 311
hotspots 32, 72

I
IBM

capturing host screens 86
considerations 98, 293

IBM3191Controller
description 63
function key inheritance 93

IBM3191PopupController 66
identifiers

for prompters 118
for screens 82, 118, 307

IDs, MANTIS rules 307
Image filename field 264
img file 264
import, key map text file 94
inheritance

dynamic 104
function key map 91
static 104
visual items 103

initialization file
copying in order to deploy

application 266
editing to remove, replace, or

insert a pattern 36
prompter files path 80
saving gOOi generation options

in 45
saving profile information in 46

installation prerequisites 20
integration wizards

Excel 153
Word 149

interfaces
generating 126
inherited visual items 103
setting up 41

item traversal sequence 159

J

JIT pop-up 34

K

KEA! emulator considerations 99,
298

key map
creating 91
creating a template subclass 94
sample templates 63
storing as text 94

key simulation 67
keys, host and ASCII 311
keystrokes, defining 98

L

layout, application, saving 145
length, screen ID 46
loadable application, updating

145
loading gOOi 42
log file 140
Logo filename field 264

M

MANTIS
command line/key simulation

67
Dynamic CONVERSE 49
rules for prompter IDs 307
Screen Design Facility 115

Menu options
data items 291
description 136
equivalent MANTIS and PC

data types 278
format 127
sequential DIF tables 287

method name
Excel Wizard controller 156
Word Wizard controller 152

Method source 264

Index

338 P39-5020-00

methods
assigning to a button in an

example of event-driven
customization

creating an event-driven
button with an existing
Smalltalk method 203

creating an event-driven
button with Smalltalk 206

introduction 203
MFS 22, 24, 82

N

names
prompters, MANTIS 310
screens 307

new controllers 100
nonproportional fonts 68

O

objects, visual 104
ObjectStudio

copy executable during
generation 264

required software 20
OpenVMS/Alpha considerations

Connect timeout value 53
Emulator Check Interval 56
Host address 53
Just In Time window 56
Pause value 55
Port number 53
Screen Tag option 58

OpenVMS/VAX considerations
connect timeout value 53
Emulator Check Interval 56
Host address 53
Just In Time window 56
Pause value 55
Port number 53
Screen Tag option 58

options, form generation 45
overwriting files 122, 124

P

parent class
for form generation 108
selecting 62

Parent class name field 63
pattern definition, for button label

75
Pause, specifying 45
pmt files 80
pop-ups

File Type options 135
identifiers 82
JIT 34
parent class name, setting 66
undefined 119
ungenerated 135

prerequisites 20
presentation

properties, setting 71
type, changing for a field 172

preview
of form before generating 146

preview of form before
generating 139, 146

product description 19
profile

default 46
for screen ID 45
naming guidelines 46
usage recommendations 47

prompter
file, pointing to 80
ID, MANTIS rules 307

Prompter option 136
prompters

duplicates 123
ensuring one per file 119
exporting 294
identifiers 118
naming, MANTIS 310
set file path 45

properties
color 68
fonts 67
presentation, setting 71

protected, field attribute 60

Index

User’s Guide 339

R

Reflection emulator 300
Reflection2 emulator 300
requirements, for installation 20
restrictions

for MANTIS applications 82,
118

form generation 127
reverse, field attribute 60
row, screen ID 46
runtime

entities, storing 266
image of application 264

S

samples
gOOi form specifications 139
templates 63

saving in gOOi.ini file
gOOi generation options 45
profile information 46

Screen Design Facility,
downloading UEF images
with 115

screen ID
displaying 129
locating 89
MANTIS rules 307
profile 45
setting 46

Screen ID Locator
description 21
process description 89

Screen option 135
screens

as menus 127
capturing 86
components 127
configuration 45
duplicates 123
ensuring one per file 119
exporting 294
identifiers 82, 118, 307
location of identifier 49
MANTIS 129
maximum size 127
multiple components 134

rules for naming 307
side-by-side 82, 118, 127
sizes supported 82, 118
specifying components 134
specifying order 134
undefined 82, 119

selection head 165
Settings tool 21
Settings window 45
settings, screen configuration 45
side-by-side screens 82, 118,

127
size

host screen 127
of form 163

Smalltalk
code implementation 25
creating an event-driven button

with 206
software, required 20
starting gOOi 42
static inheritance 104
status line, MANTIS 129
subclasses

changing 24
creating 94
function key map subclass

naming 95
saving 96

T

tab order 159
Template Hierarchy Browser

description 21
screen 94

templates
creating a key map 91
default key map 63
for visual items

application template
inheritance 104

overview 103
steps for creating 105

inheritance 104
updating 93

testing an application 109

Index

340 P39-5020-00

toolbar
definition 77
for hotspots 72
for user 76
items 78
spacing items 79
viewing

button descriptions 165
in Designer 163

Tools window 83
translation tables 311

U

UEF
definition 24
displaying screen and prompter

settings 123
extract files, locating 121
file

downloading 117
parsing 90
preparation 118
splitting 119

files directory 131
for IBM mainframe 293
images

copying from host to PC 111
downloading from MANTIS

Screen Design Facility 115
obtaining with Host Monitor

112
on ESDS cluster 117
saving 115
using FTP to copy to PC 117

UEF Generator, using 327
underline field attribute 60
UNIX considerations

Connect timeout value 53
Emulator Check Interval 56
Host address 53
Just In Time window 56
pause Palue 55
Port number 53
Screen Tag Option 58

up arrow key 33
upgrades 96
user toolbar 76

V

vertical repeat of dynamic fields
119

VSAM ESDS cluster, UEF
images on 117

W

wizards
Excel tool 153
Word tool 149

Word Wizard
description 22, 149
matching gOOi form fields 151
using 150

wrap-around capabilities 82, 118,
127

Index

User’s Guide 341

Index

342 P39-5020-00

	Back to Welcome (gOOi)
	About this book
	Using this document
	Document organization
	Conventions
	Mouse button conventions

	Related documentation
	Educational material

	Chapter 1 - Introduction
	Overview of gOOi
	Before you begin
	gOOi components
	How gOOi works
	Pre-Generation
	Generation
	Post-Generation
	Runtime

	Chapter 2 - Just-In-Time GUI display
	Introduction
	Features of Just-In-Time GUI display
	Common gOOi functions (Pop-Up Menu)

	Additional keyboard considerations for JIT
	Using the title bar close options with JIT
	JIT pop-ups
	Character Display for 3270 data streams
	Character Display for VT data streams

	Chapter 3 - Preparing to generate gOOi forms
	Loading gOOi
	Specifying gOOi generation options and settings
	Setting the screen ID
	Application bundling
	Using MANTIS Dynamic CONVERSE
	Keeping forms open for reuse
	Selecting the Host Connection
	Specifying the Host Connection Profile
	Escape sequence

	Specifying a TCP/IP Connection
	Host address
	Port number
	Connect timeout value
	Character display model
	Start up file

	Specifying an Emulator Connection
	Pause value
	Just In Time GUI Enabled
	Emulator Check Interval
	Advanced Options for Emulators
	Screen Tag option

	Specifying host field attribute matching
	Form and Color options
	Using hotspots
	Creating a user toolbar
	Spacing toolbar items
	Specifying headers and footers
	Pointing to prompter files

	Using environment-dependent tools
	Converting BMS and MFS source files into UEF format
	gOOi restrictions for non-MANTIS host applications
	BMS/MFS conversion procedure
	Capturing IBM mainframe host screens
	Locating screen IDs

	Creating a template for function key mapping
	Modifying a function key map file
	Copying a function key map file

	Editing your loadable application
	Creating an application template for visual items
	Application template inheritance
	Steps for creating an application template for visual items

	Chapter 4 - Downloading screens from MANTIS
	Methods for transferring UEF screen images
	Using the Host Monitor
	Using FTP
	Creating .exp files with the File Splitter
	gOOi restrictions for MANTIS applications
	UEF file splitting steps

	Chapter 5 - Generating gOOi forms
	Overview of gOOi forms generation
	Specifying gOOi form components
	gOOi form generation restrictions
	MANTIS users
	Form component specification steps

	Generating gOOi application forms
	Viewing a gOOi form
	Viewing an ungenerated form using Preview
	Viewing a generated gOOi form without a host connection
	Viewing the generated form outside ObjectStudio Designer
	Viewing the generated form inside ObjectStudio Designer.

	Viewing a generated gOOi form with a host connection

	Chapter 6 - Using integration wizards
	Word Wizard tool
	Excel Wizard tool

	Chapter 7 - Customizing gOOi forms
	Overview of customization
	Bringing a gOOi form into ObjectStudio Designer
	Basic customizations
	Moving fields
	Moving fields one at a time
	Moving multiple fields

	Changing the size and shape of fields
	Manually changing a field’s size and shape
	Automatically resizing selected fields
	Changing a field’s color, font, and/or justification
	Changing a field’s presentation type

	Grouping fields graphically
	Changing the form title and/or background

	Additional customizations
	Using check boxes for Y/N fields
	Using spin buttons for numeric fields
	Putting data in the status line
	Using property pages
	Example of an event-driven customization
	Creating an event-driven button with an existing Smalltalk method
	Creating an event-driven button with Smalltalk

	Chapter 8 - Host Navigation
	Overview of Host Navigation
	Host Navigation methods and attributes
	Object: Controllers generated by the Application Generator
	Methods
	Attributes
	Object: Host Objects generated by the Application Generator
	Methods
	Attributes
	Object: GOOIHostMonitorController
	Methods
	Attributes
	Object: gOOi Session
	Methods
	Attributes
	Object: GOOIJITController (Just-In-Time Controller)
	Methods
	Attributes
	Object: GOOIJITCustomController (Just-In-Time Custom Controller)
	Methods
	Attributes
	Object: GOOIVTEmulatorCustomController
	Methods
	Attributes

	Chapter 9 - Deploying a gOOi application
	gOOi application deployment steps
	Using the standard Program Generator
	Using the Small Program Generator

	Chapter 10 - PC CONTACT file access
	Overview of PC CONTACT file access
	Options for PC CONTACT
	Save/Open display options
	Numbered files floating point field format

	Designing a MANTIS view for PC CONTACT
	Create or update file views
	Name
	Password for viewing
	Password for deleting/inserting
	Indexed, sequential, or numbered
	Access method
	Maximum record size
	Reference variable name

	Update file view layout
	Position
	Format
	Length
	Offset

	Sample PC file view design
	Sample program
	PC CONTACT supported file types
	Sequential BASIC files
	Sequential TEXT files
	Sequential DIF files
	Header Items
	Data Items

	Numbered files

	Appendix A - IBM mainframe considerations
	Platform considerations

	Appendix B - Emulator considerations
	How gOOi recognizes emulators
	Emulators
	PC3270
	EXTRA!
	RUMBA
	KEA!
	Generic EHLLAPI
	Reflection
	Reflection for UNIX and Digital

	Appendix C - Screen Registry and AD/Advantage
	Screen registry and AD/Advantage

	Appendix D - gOOi class files and names
	gOOi classes
	Emulator Communication class files
	Telnet class files
	TN3270 class files
	TNVT class files
	Generator class files
	Run-time class files
	gOOi user interfaces
	Supporting classes
	Utility class
	Just-In-Time classes
	Messages
	BMS converter
	MFS converter
	UEF Generator
	Default templates

	Appendix E - Rules for screen IDs and MANTIS prompter IDs
	Screen ID rules
	Screen ID options
	Prompter ID rules

	Appendix F - Host-PC translation tables
	Translation tables

	Appendix G - gOOi error messages
	GOOIMessages class

	Appendix H - Using the UEF Generator
	Using the UEF Generator

	Glossary of terms
	button
	check box
	class
	class browser
	class method
	class variable
	controller
	form
	global variable
	inheritance
	instance
	instance variable
	instantiation
	lassoing
	literal
	local variable
	message
	method
	nil
	object
	receiver
	self
	super
	superclass
	symbol

	Index

